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1. Introduction

* This lecture discuss about a case study on the
design and evaluation of a reliable three
dimensional digital neuromorphic processor (R-
NASH)

e RNASH consists of:

* The design methodology
* Hardware

* Learning

* Mapping
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2. R-NASH system
Overview

* The overview of R-NASH are in four phases:

1. Software modeling: building the software model of
the SNN application and perform the offline training to
validate the model

2. Mapping: generating the configuration from the

software model to be able to port into the R-NASH
hardware

3. Porting to hardware: using the configuration to
perform inference in the hardware

4. Runtime maintenance: fault management for R-NASH



2. R-NASH system
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3. R-NASH hardware
Overview

* R-NASH is based on 3D Mesh Network-on-Chip for
the communication.

e Communication is based on Address Event
Representation protocol.

 Computation is done by the LIF core array for the
core (256 LIFs per core).

* SRAM-based synapses are used in R-NASH.



3. R-NASH hardware
Overview
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3. R-NASH hardware
Communication

* R-NASH supports two types of flits: spike (in AER
format) and memory flits.

* The AER format flit is converted to the address of the
weight SRAM to extract the weight of the connection

* Memory flit provides the instruction and the required

addresses to read/write to/from the memory cells and
registers in the neuron cluster.



3. R-NASH hardware
Flit format
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3. R-NASH hardware
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3. R-NASH hardware
Network Interface
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3. R-NASH hardware
LIF neuron archltecture
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3.
STDP

R-NASH hardware
earning architecture

Fig. 8.7: On-chip STDP learning architecture
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4. R-NASH learning
Overview

* R-NASH supports two types of learning:

e Off-chip learning: weights are trained off-line and then
download to the chip

* On-chip learning with STDP: R-NASH core support on-
chip learning with the ability to update the weight
during operation.

* The on-chip learning STDP will follow the simplified
rules for unsupervised learning:
* Weight adjustment will be fixed.
* Weight normalization will be performed.



4. R-NASH learning
STDP learning model
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Fig. 8.6: On-chip STDP learning model 18



4. R-NASH learning
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5. R-NASH mapping
Overview

* As we break the neuromorphic system into groups
of neurons connected via a Network-on-Chip,
dividing and placing are essential issues since they
can heavily affect the performance.

* For instance, placing two connected neurons far apart
can lead to a critical delay path in the system.

* In R-NASH, we use Genetic Algorithm to perform
mapping.
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5. R-NASH mapping
Mapping Algorithm

Algorithm 6 Genetic algorithm for neurons mapping

// initialize phase

S1: load the system configuration

S2: randomize the K mapping solutions

// evolve phase

for (generation g; in I to G) do

S3: remove the wrong mapping solutions

S4: calculate cost function (communication cost) for each solution of the population
SS: select the B best out of K solutions based on the cost function

S6: mutate the B best solutions to have new K solutions

S6: crossover the new K solutions to have new population

S7: check if it satisfies the communication cost or does not improve over several generations

// finalize phase
S7: calculate cost function for each solution of the population
S8: select the B = 1 best out of K solutions based on the cost function
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5. R-NASH mapping
Gene, Cross-over and Mutation

—
String structure Member 1 i 0[1]0
(a) Member 2 i 1(1]1
[
|
|
v v
Member 2 111(0(1|1]1
(c)
Member 3 0[{0|11]1(0]0
: . Member 1 1(0/(1 0
: . | |
Member M [O]L]0]0]0(1 Mutated TTTeTIT6To
member
(b) (d)

Fig. 8.9: Genetic algorithm (GA): (a) an example string structure; (b)
initialization process; (c) cross-over and (d) mutation 23



5. R-NASH mapping
Example of crossover and mutation
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Fig. 8.10: Crossover and mutation method for GA mapping. (A) Crossover. (B) Mutation
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5. R-NASH mapping
Fault-tolerance features

* To tackle defective routing, R-NASH offers:

e Fault tolerance mechanism inside router (input buffer,
crossbar).

* Error Correction Code in the flit (2xSECDED(22, 16)).
e Soft error tolerance in the routing unit

* To tackle defective neurons, R-NASH offer
remapping to use spare neurons as replacements.
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6. Evaluation

Genetic Algorithm for Initial Mapping
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6. Evaluation
Layout
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6. Evaluation
Off-chip learning
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Fig. 8.17: Accuracy result of offline training for MNIST dataset with the network model 784:1024:10.
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6. Evaluation
Off-chip learning
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Fig. 8.18: Accuracy result of offline training for MNIST dataset with the network model 784:1024:1024:10.
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6. Evaluation
Off-chip learning
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5. R-NASH mapping
Genetic Algorithm for Initial Mapping
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Fig. 8.20: lllustration of the STDP learning model. (A) the final weights. (B)
lllustration of input spikes for the first test image (number 8). (C) lllustration of
output spikes.
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7. Conclusions

* This lecture shows a case study of R-NASH:
* 3D NoC based neuromorphic architecture.
e Fault-tolerance features

* |t supports two types of learning:
* Off-chip learning & On-chip learning with STDP

* R-NASH also support initial mapping using GA.

* R-NASH provide protection in the routing unit
(routers) and computing unit (neurons)
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