

Spiking Neuron Processing Core (SNPC) Physical Design

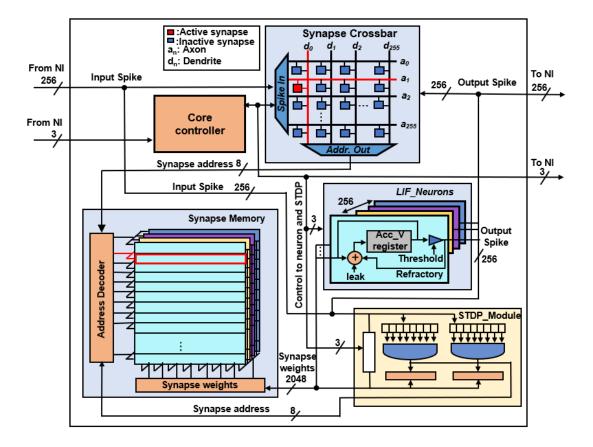
Technical Report

© Adaptive Systems Laboratory

Division of Computer Engineering School of Computer Science and Engineering University of Aizu

> Contact: [d8211104, benab] @ u-aizu.ac.jp Edition: April 22, 2021

- 1. Specification and RTL design.
- 2. RTL Functional Simulation with Modelsim.
- 3. Synthesis with Cadence Genus.
- 4. Gate Level Simulation.
- 5. Place and Route with Cadence Innovus.


Phase 1: Specification and RTL design

Contents

- Architecture
- Specification
- RTL Design

High Level View of SNPC Architecture

Specification and RTL Design

- First the logical behavior of the SNPC design is specified in Verilog HDL language. The logical behavior is described in the RTL level of abstraction, because it's most suitable for clocked designs. The SNPC design consist of sub-designs which are described in separate HDL codes. These sub designs are used in designs higher in hierarchy.
- Specification:
 - 256 leaky integrate and fire (LIF) neurons
 - 65K synapses: 256 SRAMs (256-bank, 8-bit)
 - Spike timing-dependent plasticity (STDP) on-chip learning
- The design hierarchy of SNPC and the sub-designs is described below:

SNPC

-SNPC_cntrl (core controller)

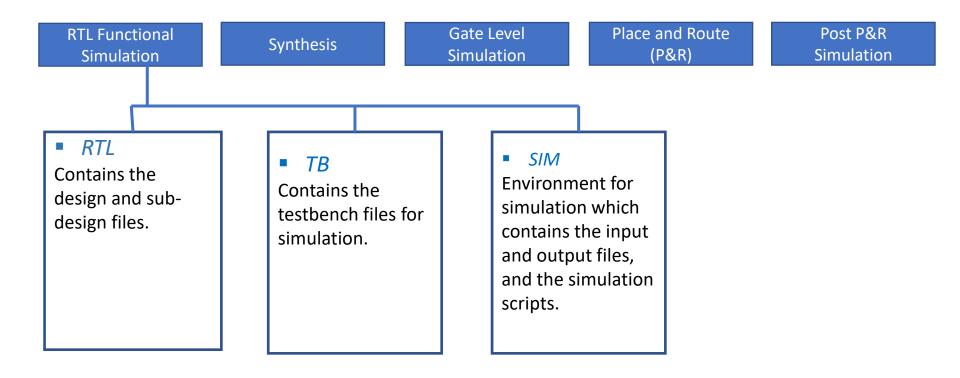
LIF_neuron

Xbar (synapse crossbar, synapse memory)

Phase 2: RTL Functional Simulation with Modelsim

Contents

- RTL Functional simulation directory structure
- Environment setup
- Modelsim simulation and Result Verification



RTL Simulation with Modelsim

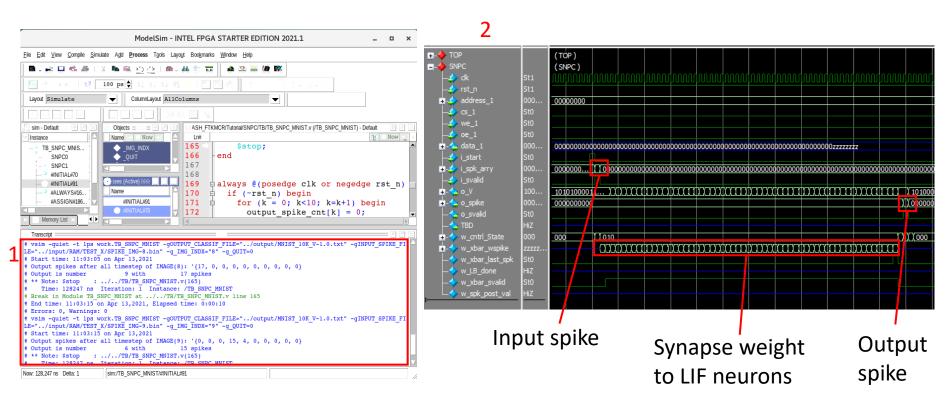
- To test the logical behavior of the SNPC and the sub-designs, testbenches are specified. The testbenches are basically also a description in Verilog HDL which supplies the designs and sub-design with stimulus signals. The functional simulation is performed with interactive batch scripts. The SNPC design sources are first loaded in modelsim, and compiled starting from the top design, to the sub-designs, and then the testbench source. After compilation, the test bench is run, to perform the simulation (Both the compilation and simulation is performed using the interactive batch scripts). For this functional simulation, the MNIST dataset of 10,000 16×16 images are classified according to their labels from 1-9. The weights for this classification has been trained off-chip as ANN, and then converted to SNN. The MNIST images are converted to spikes using Poisson distribution.
- Specification:
 - Network: 256:10 (single layer), 256:225:10 (2 layer)
 - Synapses: 25,600, 59,850 (57,600 + 2250) 8-bit
- This simulation is going to be performed using batch scripts are in ~/SNPC/RTL_SIM/script/ directory.
- The trained synapse weights are loaded into the synapse memory before simulation begins.

Directory Structure

Environment Setup

	ikechukwu@zxp007:~/Documents/3D_NASH_FTKMCR/Tutorial/SNPC/SIM/work _	×
	File Edit View Search Terminal Help	
1	[ikechukwu@zxp007 work]\$ source ~/.cad.sh [ikechukwu@zxp007 work]\$ modelsim	
		I.

(1) To set the functional simulator working environment, from the terminal, navigate to **~/SNPC/RTL_SIM/work/**. If you are using file explorer, go to the same directory, right click and select **Open in Terminal**. Use the following commands to set the environment then launch modelsim.


> source ~/.cad.sh modelsim

Begin RTL Simulation

ile <u>L'uit vien C</u> omplie	<u>a</u> muale	Add Transcript Tools Layout Bookmarks Window Help	
	2		
Layout NoDesign		ColumnLayout AllColumns	
🗼 Library 🚃			6
Name	Туре	Path	
work	Library	/home/ikechukwu/Documents/3D_NASH	
220model	Library	\$MODEL_TECH//altera/vhdl/220model	
220model_ver	Library	\$MODEL_TECH//altera/verilog/220model	
altera	Library	\$MODEL_TECH//altera/vhdl/altera	
altera_Insim	Library	\$MODEL_TECH//altera/vhdl/altera_Insim	
···· altera_Insim_ver	Library	\$MODEL_TECH//altera/verilog/altera_I	
···· altera_mf	Library	\$MODEL_TECH//altera/vhdl/altera_mf	
mlis altera_mf_ver	Library	\$MODEL_TECH//altera/verilog/altera_mf	
···· altera_ver	Library	\$MODEL_TECH//altera/verilog/altera	
···· cyclone10gx	Library	\$MODEL_TECH//altera/vhdl/cyclone10	
… cyclone10gx_hip	Library	\$MODEL_TECH//altera/vhdl/cyclone10	
— cyclone10gx_hip_ve.	. Library	\$MODEL_TECH//altera/verilog/cyclone	
ം cyclone10gx_hssi	Library	\$MODEL_TECH//aitera/vhdl/cyclone10	
… cyclone10gx_hssi_v.		\$MODEL_TECH//altera/verilog/cyclone	
	1.5		
Transcript			
	/t/run_L	ocal_MNIST.tcl	
ModelSim≻do/scrip			
ModelSim> do/scrip			
ModelSim> do/scrip			
ModelSim>do∕scriµ			
ModelSim≻do/scrip			
ModelSim> do∕scrip			
ModelSim≻do/scrip			
ModelSim> do∕scrip			
ModelSim> do∕scrip			

(1) After launching modelsim, use the following command to run the simulation. *do ../script/run_Local_MNIST.tcl* Verification of RTL Simulation Results

(1) The simulation result is displayed in the modelsim transcript.

(2) Simulation waveform of the SNPC showing the input spikes, synapse weights sent to the LIF neurons and output spike.

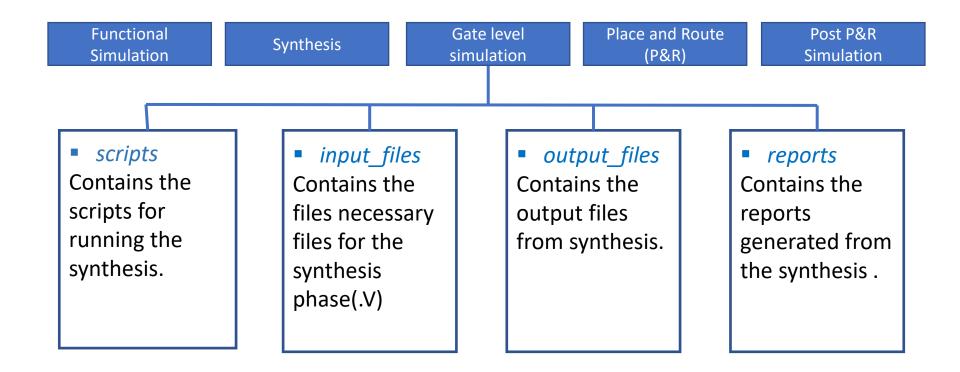
Modify RTL Simulation Script

set SRC_DIR {../../RTL/}

```
if {[file isdirectory work]} {
   # this is a directory
 } else {
     vlib work
    vlog -quiet -vlog01compat -work work +incdir+$SRC_DIR ../../RTL/LIF neuron.v
    vlog -guiet -vlog01compat -work work +incdir+$SRC DIR ../../RTL/xbar.v
    #vlog -guiet -vlog01compat -work work +incdir+$SRC DIR .././RTL/LB.v
    vlog -quiet -vlog01compat -work work +incdir+$SRC_DIR ../../RTL/aw ram dp sr sw.v
    vlog -quiet -vlog01compat -work work +incdir+$SRC DIR ../../RTL/SNPC cntrl.v
    vlog -quiet -vlog01compat -work work +incdir+$SRC DIR ../../RTL/SNPC.v
    vlog -quiet -vlog01compat -work work +incdir+$SRC DIR ../../TB/TB SNPC MNIST.v
    # vlog -vlog01compat -work work ../../TB/SNPC/TB SNPC MNIST 10K.v
 }
for {set i 1} {$i < 10} {incr i} {</pre>
    puts "I run the image
                        e: $i"
    vsim -quiet -t lps -g QUIT=0 -g IMG INDX="$i" -gINPUT SPIKE FILE="../input/RAM/TEST X/SPIKE IMG-$i.bin" \
        -aOUTPUT CLASSIF FILE="../output/MNIST 10K V-1.0.txt" work.TB SNPC MNIST
    run -all
    # quit -sim
    add wave -group TOP /*
    add wave -group TOP /output spike cnt
    add wave -group SNPC0 /SNPC0/*
    add wave -group SNPC1 /SNPC1/*
}
# quit -sim
exit
```

(1) Note: The MNIST simulation runs for 10 images by default. To change this number, open **~/SNPC/RTL_SIM/script/ run_Local_MNIST.tcl** in text editor and the number of images can be changed to a maximum of 10,000. The simulation output is stored in **~/SNPC/RTL_SIM/output**

Phase 3: Synthesis with Cadence Genus



Contents

- Synthesis directory structure
- Environment and Genus synthesis steps
- Synthesis generated files and reports

Synthesis directory structure

Synthesis with Cadence Genus

- Now that the SNPC RTL design is logically valid, it should be synthesized into design which consists of only the standard cells and macros from the different libraries. For this, the single layer network and Cadence genus tool will be used. The synthesis is going to be done with a script. The script is written in TCL language, and specify the synthesis configuration, files, and constraints like clock period, input/output delay, library etc. The Nangate open cell library is used for this synthesis.
- The synthesis is going to be done in the ~/SNPC/SYNTH directory. From terminal, navigate to the ~/SNPC/SYNTH/ directory, or if you are using file explorer, go to the directory, right click and select Open in Terminal.
- The SNPC has 256 neurons. But to be able to perform gate level simulation and the post P&R simulation, we will synthesize for the single layer network with 10 neurons in the SNPC (Note: you can change the number of neurons in the SNPC to 256 before synthesis).

Step 1: Environment and tool launch

(1) In terminal, type the following command to set the environment and launch Cadence genus:

source ~/.cad.sh genus -legacy_ui

Synthesis Script

######################################	# Apply Constraints and generate clocks set clock [define_clock -period \${myPeriod_ps} -name \${myClk} [clock_ports]] external_delay -input \$myInDelay_ns -clock \${myClk} [find / -port ports_in/*] external_delay -output \$myOutDelay_ns -clock \${myClk} [find / -port ports_out/*]
<pre># Set the search paths to the libraries and the HDL files # Remember that "." means your current directory. Add more directories # after the . if you like. set_attribute hdl_search_path {./Src/} set_attribute lib_search_path {.//LIB/} set_attribute library [list typical.lib output_sp_w8_b256_freepdk45/sram_sp_w8_b256_freepdk45_TT_1p1V_25C.lib] set_attribute information_level 6</pre>	 # Sets transition to default values for Synopsys SDC format, #fall/rise 400ps dc::set_clock_transition .4 \$myClk # check that the design is OK so far check_design -unresolved report timing -lint
<pre>set myFiles [list LIF.v LIF_neuron.v SNPC.v SNPC_cntrl.v xbar.v common.v];# All HDL files set basename SNPC ;# name of top level module set myClk clk ;# clock name set myPeriod_ps 10000 ;# Clock period in ns set myInDelay_ns 0.1 ;# delay from clock to inputs valid set myOutDelay_ns 0.1 ;# delay from clock to output valid set runname net ;# name appended to output files #************************************</pre>	<pre># Synthesize the design to the target library synthesize -to_mapped # Write out the reports report timing > ./reports/\${basename}_\${runname}_timing.rep report gates > ./reports/\${basename}_\${runname}_cell.rep report power > ./reports/\${basename}_\${runname}_power.rep report area > ./reports/\${basename}_\${runname}_area.rep # Write out the structural Verilog and sdc files write_hdl -mapped > ./output_files/\${basename}_\${runname}_sdc write_sdf > ./output_files/\${basename}_\${runname}.sdf</pre>

The synthesis script can be found in ~/SNPC/SYNTH/script/ directory. As shown in the image above, the design source and libraries are specified then the timing parameters are set before synthesis begins.

Step 2: Begin Synthesis

	File Edit View Search Terminal Help
1	legacy_genus:/> source script/snpc.tcl

(1) In terminal, to run the synthesis script, type the following command: source script/snpc.tcl

Generated Files and Reports

 When the synthesis is done, the generated netlist and constraint files are saved in the *~SNPC/SYNTH/output_files/* directory. The hardware complexity reports (area, cell, power, and timing) of both instances of SNPC are saved in the *~SNPC/SYNTH/reports/* directory.

Area Report

Generated by: Genus(TM) Synthesis Solution 18.13-s027_1	
Generated on: Apr 19 2021 10:16:36 am	
Module: SNPC	
Technology libraries: NangateOpenCellLibrary revision 1.0	
sram_sp_w8_b256_freepdk45_TT_1p1V_25C_lib	
Operating conditions: typical (balanced_tree)	
Wireload mode: enclosed	
Area mode: timing library	
Instance Module Cell Count Cell Area Net Area Total Area Wireload	
SNPC 3204 49002.671 0.000 49002.671 5K_hvratio_1_1 (D)	
XBAR0 xbar_LAYER_INDX0_WEIGHT_WIDTH8_SPK_ARRAY_WIDTH256_ 2217 47267.553 0.000 47267.553 5K_hvratio_1_1	(D)
LIF_GEN[9].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_26 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[8].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_27 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[7].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_28 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[6].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_29 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[5].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_30 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[4].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_31 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[3].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_32 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[2].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_33 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[1].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0_34 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
LIF_GEN[0].LIF0 LIF_neuron_WEIGHT_WIDTH8_OUTPUT_REG0 97 170.772 0.000 170.772 5K_hvratio_1_1 (D)	
CNTL0 SNPC_cntrl 15 25.802 0.000 25.802 5K_hvratio_1_1 (D)	
(D) = wireload is default in technology library	

 The area report from synthesizing an SNPC with the single layer network is shown in the figure above describing the ten neurons, their synapse memory contained in the crossbar (xbar), and the control unit. The total area is depicted in 1

Power Report

Genus(TM) Synthesis Solution 18.13-s027_1 Generated by: Apr 19 2021 10:16:36 am Generated on: Module: SNPC Technology libraries: NangateOpenCellLibrary revision 1.0 sram sp w8 b256 freepdk45 TT 1p1V 25C lib Operating conditions: typical (balanced_tree) Wireload mode: enclosed Area mode: timing library Leakage Dynamic Total Cells Power(nW) Power(nW) Power(nW) Instance SNPC 3204 131531.155 2391192.834 2522723.989 XBAR0 2217 94371.775 1790324.843 1884696.617 LIF GEN[1].LIF0 97 3674.987 50217.790 53892.777 LIF_GEN[3].LIF0 97 3670.734 59367.429 63038.163 97 3668.777 50887.476 54556.254 LIF_GEN[6].LIF0 LIF_GEN[5].LIF0 97 3663.160 52133.784 55796.944 LIF_GEN[2].LIF0 97 3656.570 50652.893 54309.464 LIF GEN[9].LIF0 97 3653.810 52437.971 56091.781 LIF_GEN[7].LIF0 97 3652.001 49376.049 53028.050 LIF GEN[4].LIF0 97 3651.879 54303.068 57954.948 LIF_GEN[0].LIF0 97 3645.549 53134.886 56780.435 LIF GEN[8].LIF0 97 3644.805 50285.061 53929.866 CNTL0 15 543.179 9930.136 10473.315

 The power report from synthesizing an SNPC with the single layer network is shown in the figure above describing the ten neurons, their synapse memory contained in the crossbar (xbar), and the control unit. The total power is depicted in 1

Cell Report

Generated by:	Genus(TM) Synthesis Solution 18.13-s027_1
Generated on:	
Module:	SNPC
	raries: NangateOpenCellLibrary revision 1.0
	ram_sp_w8_b256_freepdk45_TT_1p1V_25C_lib
	ditions: typical (balanced_tree)
Wireload mode	
Area mode:	timing library
Gate	Instances Area Library
Gate	Instances Area Library
AND2_X1	96 102.144 NangateOpenCellLibrary
AND2_X4	1 2.394 NangateOpenCellLibrary
AND3_X1	64 85.120 NangateOpenCellLibrary
AND3_X4	1 2.926 NangateOpenCellLibrary
AND4_X1	21 33.516 NangateOpenCellLibrary
AOI211_X1	2 2.660 NangateOpenCellLibrary
AOI21_X1	19 20.216 NangateOpenCellLibrary
AOI221_X1	13 20.748 NangateOpenCellLibrary
AOI222_X1	196 417.088 NangateOpenCellLibrary
AOI22_X1	84 111.720 NangateOpenCellLibrary
CLKBUF_X1	80 63.840 NangateOpenCellLibrary
DFF_X1	389 1759.058 NangateOpenCellLibrary
DFF_X2	1 5.054 NangateOpenCellLibrary
FA_X1	70 297.920 NangateOpenCellLibrary
INV_X1	545 289.940 NangateOpenCellLibrary
INV_X16	1 4.522 NangateOpenCellLibrary
INV_X8	2 4.788 NangateOpenCellLibrary
MUX2_X1	10 18.620 NangateOpenCellLibrary
NAND2_X1	189 150.822 NangateOpenCellLibrary
NAND2_X4	1 2.394 NangateOpenCellLibrary
NAND3_X1	57 60.648 NangateOpenCellLibrary
NAND4_X1	51 67.830 NangateOpenCellLibrary
NOR2_X1	217 173.166 NangateOpenCellLibrary

NOR3_X1	108	114.912 NangateOpenCellLibrary
NOR4_X1	170	226.100 NangateOpenCellLibrary
OAI211_X1	24	31.920 NangateOpenCellLibrary
OAI21_X1	136	144.704 NangateOpenCellLibrary
OAI21_X2	5	9.310 NangateOpenCellLibrary
OAI221_X1	103	3 164.388 NangateOpenCellLibrary
OAI222_X1	1	2.128 NangateOpenCellLibrary
OAI22_X1	25	33.250 NangateOpenCellLibrary
OR2_X1	46	48.944 NangateOpenCellLibrary
OR3_X1	43	57.190 NangateOpenCellLibrary
OR4_X1	79	126.084 NangateOpenCellLibrary
XNOR2_X1	139	9 221.844 NangateOpenCellLibrary
XOR2_X1	205	327.180 NangateOpenCellLibrary
sram_sp_w8_b256_fr	eepdk	k45 10 43797.583 sram_sp_w8_b256_freepdk45_TT_1p1V_25C_lib

total	32	204 49002.671
	Library	Instances Area Instances %
		rary $31945205.088 99.7$ reepdk45_TT_1p1V_25C_lib 1043797.583 0.3
sequen inverte	-	
logic	2176 30	
total	3204 490	002.671 100.0

 The cell report provides a report of the number of instances and area of each of the library cell used for the design. 1 for the Nangate library and 2 for the SRAM library

Timing Report

	M) Synthesis Solution 18.13-s027_1 021 10:16:36 am	g3298/CO g3296/CI	FA_X1	1 3.0 15 +72 5845 F +19 5864
Module: SNPC		g3296/CO	FA_X1	1 3.0 15 +72 5936 F
Technology libraries: Nanga	teOpenCellLibrary revision 1.0	g3294/CI	FA 144	+19 5955
sram_sp_w8_b2	56_freepdk45_TT_1p1V_25C_lib	g3294/CO	FA_X1	5 9.5 24 +87 6042 F
Operating conditions: typica	II (balanced_tree)	g3291/A	04104 144	+17 6059
Wireload mode: enclose	d	g3291/ZN	OAI21_X1	2 3.9 35 +33 6092 R
Area mode: timing libr	ary	g3284/C1	0 4 10 4 4 V 4	+13 6105
		g3284/ZN	OAI211_X1	1 2.4 18 +28 6133 F
		g3277/A	VN0000 V4	+15 6148
Pin Type	Fanout Load Slew Delay Arrival	g3277/ZN	XNOR2_X1	1 1.2 14 +41 6189 F
	(fF) (ps) (ps) (ps)	g3272/B		+8 6197
		g3272/Z	MUX2_X1	3 5.4 14 +69 6265 F
clock clk) launch	5000 F	g3269/A1		+15 6281 2 4.0 15 +23 6304 R
(BAR0		g3269/ZN g3265/A1	NAND2_X1	2 4.0 15 +23 6304 R +14 6318
GEN_RAM[9].R0/clk0	400 5000 F	g3265/ZN	NAND2_X1	12 22.6 44 +58 6376 F
GEN RAMIO R0/dout0171 (P)		03203/ZIN	NAND2_A1	12 22.0 44 TO 03/0F
GEN_NAM[9].No/dout0[7](F)	sram_sp_w8_b256_freepdk45			+00 6206
	+6 5311	g3263/A		+20 6396
drc_buf_sp58949/A drc_buf_sp58949/Z CLK		g3263/A g3263/ZN	INV_X1	1 1.9 14 +25 6421 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK KBAR0/o_wspike[72]	+6 5311	g3263/A g3263/ZN g3261/C1	-	1 1.9 14 +25 6421 R +11 6432
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0]	+6 ⁵ 5311 BUF_X1 3 5.1 15 +35 5347 F	g3263/A g3263/ZN g3261/C1 g3261/ZN	INV_X1 A0I221_X1	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2	+6 ⁵ 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A	_ AOI221_X1	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 I 1 3.0 7 +36 5394 F	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN	_ AOI221_X1 INV_X1	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X ⁻ g3305/CI	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/	- AOI221_X1 INV_X1 D <<< DFF_X1	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 <u>6487</u>
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/CI g3305/CO FA_X1	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN	- AOI221_X1 INV_X1 D <<< DFF_X1	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/CI g3305/CO FA_X1 g3304/CI	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F +19 5500	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/ r_acc_V_reg[1]/	_ AOI221_X1 INV_X1 D <<< DFF_X1 CK setup	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 6487 400 +56 6543 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/CI g3305/CO FA_X1 g3304/CI g3304/CO FA_X1	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F +19 5500 1 3.0 15 +72 5573 F	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/	- AOI221_X1 INV_X1 D <<< DFF_X1	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 <u>6487</u>
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/CI g3305/CO FA_X1 g3304/CI g3304/CO FA_X1 g3302/CI	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F +19 5500 1 3.0 15 +72 5573 F +19 5591	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/ r_acc_V_reg[1]/ (clock clk)	AOI221_X1 INV_X1 D <<< DFF_X1 CK setup capture	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 6487 400 +56 6543 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/CI g3305/CO FA_X1 g3304/CI g3304/CO FA_X1 g3302/CI g3302/CO FA_X1	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F +19 5500 1 3.0 15 +72 5573 F +19 5591 1 3.0 15 +72 5664 F	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/ r_acc_V_reg[1]/ clock clk) 	AOI221_X1 INV_X1 D <<< DFF_X1 CK setup capture 457ps	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 6487 400 +56 6543 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] .IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/Cl g3305/CO FA_X1 g3304/Cl g3302/Cl g3302/Cl g3302/CO FA_X1 g3300/Cl	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F +19 5500 1 3.0 15 +72 5573 F +19 5591 1 3.0 15 +72 5664 F +19 5682	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/ r_acc_V_reg[1]/ (clock clk) Timing slack : 3 Start-point : XBA	_ AOI221_X1 D <<< DFF_X1 CK setup capture 457ps R0/GEN_RAM[9].R0/o	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 6487 400 +56 6543 R 10000 R
drc_buf_sp58949/A drc_buf_sp58949/Z CLK (BAR0/o_wspike[72] IF_GEN[9].LIF0/i_wspike[0] g3323/A2 g3323/ZN AND2_X g3305/CI g3305/CO FA_X1 g3304/CI g3304/CO FA_X1 g3302/CI g3302/CO FA_X1	+6 5311 BUF_X1 3 5.1 15 +35 5347 F +11 5358 1 1 3.0 7 +36 5394 F +19 5412 1 3.0 15 +69 5482 F +19 5500 1 3.0 15 +72 5573 F +19 5591 1 3.0 15 +72 5664 F	g3263/A g3263/ZN g3261/C1 g3261/ZN g3254/A g3254/ZN r_acc_V_reg[1]/ r_acc_V_reg[1]/ (clock clk) Timing slack : 3 Start-point : XBA	AOI221_X1 INV_X1 D <<< DFF_X1 CK setup capture 457ps	1 1.9 14 +25 6421 R +11 6432 1 1.8 22 +17 6449 F +12 6461 1 1.4 9 +17 6478 R +9 6487 400 +56 6543 R 10000 R

 The timing report provides a report of the validation of timing performance of the SNPC. This validation is done by checking all possible paths for timing violations. 1 shows the period of the SNPC.

Phase 4: Gate Level Simulation with Modelsim

Contents

- Gate level simulation directory structure
- Environment and Modelsim simulation

Gate Level Simulation with Modelsim

- This is basically the same step as RTL simulation, only here the synthesized SNPC source is simulated together with a SDF (standard delay format) file. The synthesized SNPC source (netlist) is a structural description of the design, with all the standard cells and macro's (memory blocks) connected to each other in the best possible way, for a functional and fastest design. The SDF file contains of delay values for the used standard cells, and the interconnect delays are guessed, because Design Compiler doesn't contain any interconnect information. These delay values are annotated into the synthesized design and simulated.
- For this simulation, the same setup and MNIST dataset for RTL functional simulation is used.

Environment setup

	File Edit View Search Terminal Help
1	[ikechukwu@zxp007 work]\$ source ~/.cad.sh [ikechukwu@zxp007 work]\$ modelsim

(1) To set the functional simulator working environment, from the terminal, navigate to **~/SNPC/GL_SIM/work/**. If you are using file explorer, go to the same directory, right click and select **Open in Terminal**. Use the following command to set the environment and launch modelsim.

> source ~/.cad.sh modelsim"

Begin Gate Level Simulation

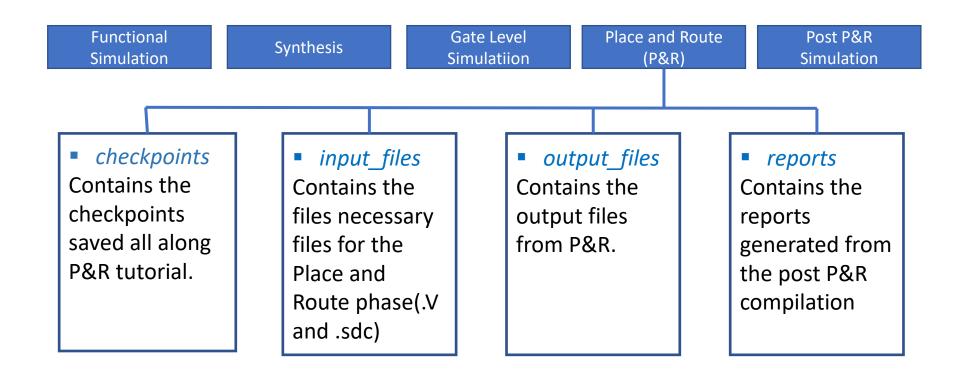
희 ~ 2	3 11 - 4		<u>*2</u> :	<u>`</u>	80 M	0 10 i			
Layout 1	NoDesign		ColumnLa	ayout AllColum	ns		•	1	
📜 Library						8			
Name		Туре	Path						
wor	rk	Library	/home/ikechukwu/	Documents/3D_NA	SH				
220	Omodel	Library	\$MODEL_TECH/	/altera/vhdl/220mo	del				
220	Omodel_ver	Library	\$MODEL_TECH/	/altera/verilog/220n	nodel				
··· alte	era	Library	\$MODEL_TECH/	/altera/vhdl/altera					
··· alte	era_Insim	Library	\$MODEL_TECH/	/altera/vhdl/altera_l	Insim				
···· alte	era_Insim_ver	Library	\$MODEL_TECH/	/altera/verilog/altera	a_l				
	era_mf	Library	_	/altera/vhdl/altera_					
.err¶⊿ alte		Library	_	/altera/verilog/altera	-				
	-	Library	_	/altera/verilog/altera					
		Library	-	/altera/vhdl/cyclone					
	clone10gx_hip	Library	_	/altera/vhdl/cyclone					
	clone10gx_hip_ve	-	-	/altera/verilog/cyclo					
	• <u>-</u>	Library	-	/altera/vhdl/cyclone					
сус	clone10gx_hssi_v	Library	\$MODEL_TECH/	/altera/verilog/cyclo	one				
Transcri	ipt 🖂								= 1
	do/scrip	t/run_L	ocal_MNIST.	tcl					
ModelSim>									
ModelSim>									
ModelSim>									
ModelSim>									
ModelSim>									
ModelSim>									
ModelSim>									
ModelSim>									
ModelSim>									

(1) After launching modelsim, use the following command to run the simulation. *do ../script/run_Local_MNIST.tcl*

Modify Gate Level Simulation Script

```
set SRC DIR {..//Netlist/}
#set LIB DIR {../../LIB/}
 if {[file isdirectory work]} {
   # this is a directory
} else {
     vlib work
    vlog -quiet -vlog01compat -work work +incdir+$SRC DIR ../Netlist/SNPC net.v
    vlog -quiet -vlog01compat -work work +incdir+$SRC DIR ../../LIB/NangateOpenCellLibrary.v
    vlog -quiet -vlog01compat -work work +incdir+$SRC DIR ../TB/TB SNPC MNIST.v
    # vlog -vlog01compat -work work ../../TB/SNPC/TB SNPC MNIST 10K.v
 }
for {set i 1} {$i
                 k 2} {incr i} {
    puts "I run the image: $i'
    vsim -quiet -t lps -g QUIT=0 -g IMG INDX="$i" -gINPUT SPIKE FILE="../input/RAM/TEST X/SPIKE IMG-$i.bin" \
        -qOUTPUT CLASSIF FILE="../output/MNIST 10K V-1.0.txt" work.TB SNPC MNIST
    run -all
    #auit -sim
    #add wave -group TOP /*
    #add wave -group TOP /output spike cnt
    #add wave -group SNPC0 /SNPC0/*
    #add wave -group SNPC1 /SNPC1/*
}
# quit -sim
exit
```

(1) Note: The MNIST simulation runs for 2 images by default. To change this number, open ~/SNPC/GL_SIM/script/ run_Local_MNIST.tcl in text editor and the number of images can be changed to a maximum of 10,000. The simulation output is stored in ~/SNPC/GL_SIM/output


Phase 5: Place & Route with Cadence Innovus

Contents

- Place & Route (P&R) directory structure
- Environment
- Innovus P&R steps (Batch mode)
- Innovus P&R steps (GUI mode)

Place and Route

- The place and route process places each macro from the synthesis netlist into an available location on the target silicon and connects the macros using routing resources available on the target silicon and technology. The place and route tools read the netlist, extract the components and nets from the netlist, place the components on the target device, and interconnect the components using the specified interconnections.
- To perform the place and route, copy the files generated from the netlist from ~/SNPC/SYNTH/RTL_SYNTH/output_files/ to ~/SNPC/PnR/input_files/. The scripts for the place and place and route scripts are located in the /SNPC/PnR/scripts/ directory. Two of the scripts ".global" and ".view" are used to set the parameters (libraries, constraints, netlist) and conditions for the place and route. The next five scripts which their names begin with indexes from 0 to 5 are all scripts for various stage of the place and route stages: initialize, floor plan, place macro, place standard cell, route, and finish. The final script without index is used to call the other scripts during the place and route.

Place & Route (Batch Mode) (1/3)

ikechukwu@zxp007:~/Documents/3D_N/

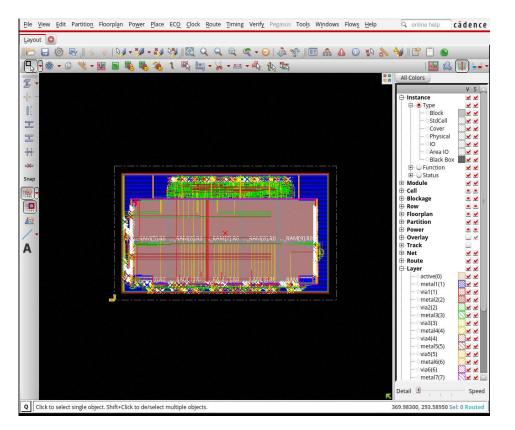
File	Edit	View	Search	Terminal	Help	

1 [ikechukwu@zxp007 PnR]\$ source ~/.cad.sh [ikechukwu@zxp007 PnR]\$ innovus

(1) To begin the place and route, navigate to ~/SNPC/PnR/ on terminal and type the following commands to setup the environment and launch the innovus tool:

source ~/.cad.sh innovus

ikechukwu@zxp007:~/Documents/3D_NASH_FTKMCR/Tu


File Edit View Search Terminal Help

innovus 3> source scripts/SNPC.tcl

(1) After the innovus tool has been launched the graphical user interface will also be launched. However, type the following command on the terminal to launch the place and route script. *source scripts/SNPC.tcl*

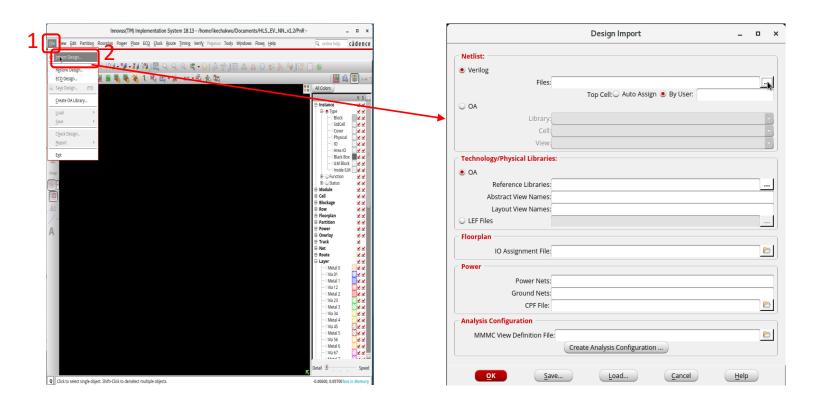
Note: The place and route will take some time to complete because the design is somewhat large.

Place & Route (Batch Mode) (3/3)

(1) The image above is the output of the place and route, along with other outputs and reports in the **~/SNPC/P&R/output_files/** and **~/SNPC/P&R/reports/** directories respectively.

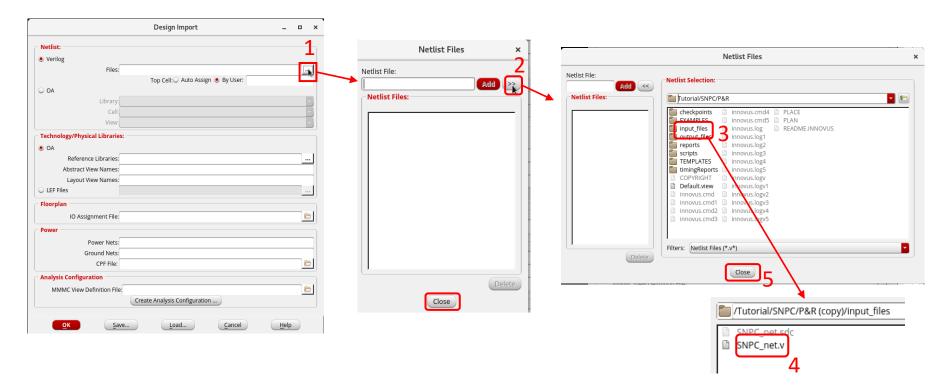
1

Place & Route (GUI Mode)

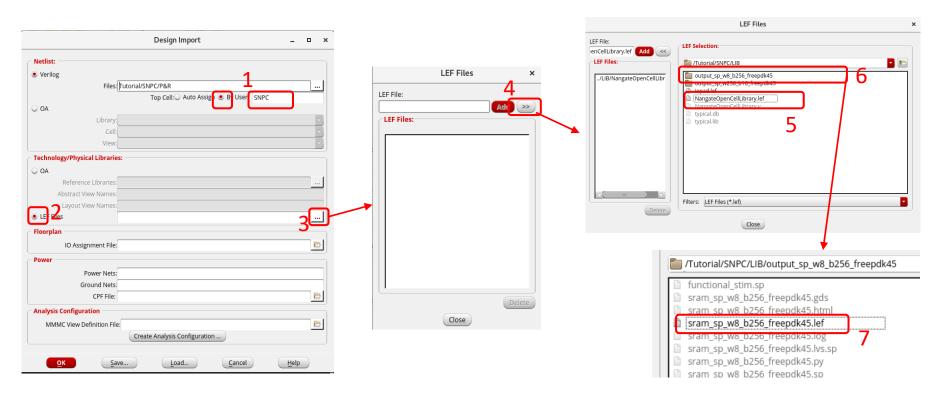

File	Edit	View	Sea	rch	Ter	rminal	Help	
[ike [ike	chukw chukw	/u@zxp /u@zxp	007 007	PnR PnR	2]\$ 2]\$	sour innov	ce ~/. /us	cad.sh

(1) To begin the place and route, navigate to ~/SNPC/PnR/ on terminal and type the following commands to setup the environment and launch the innovus tool:

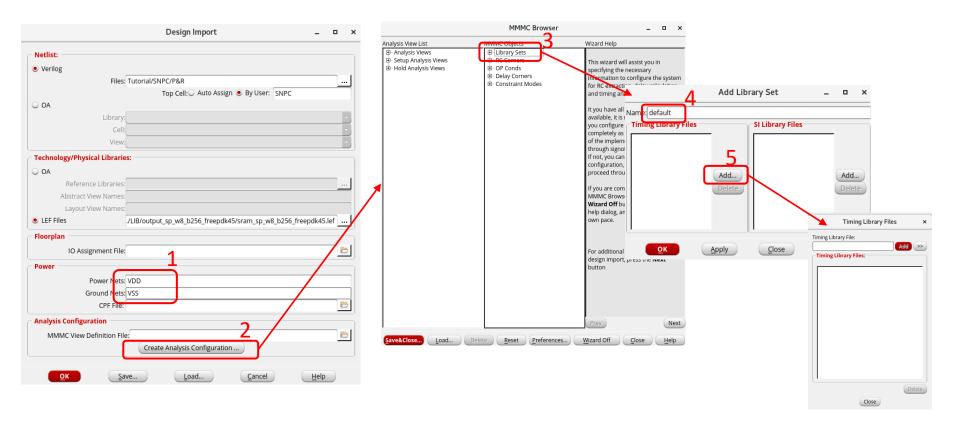
source ~/.cad.sh innovus


Step 1: Import Design

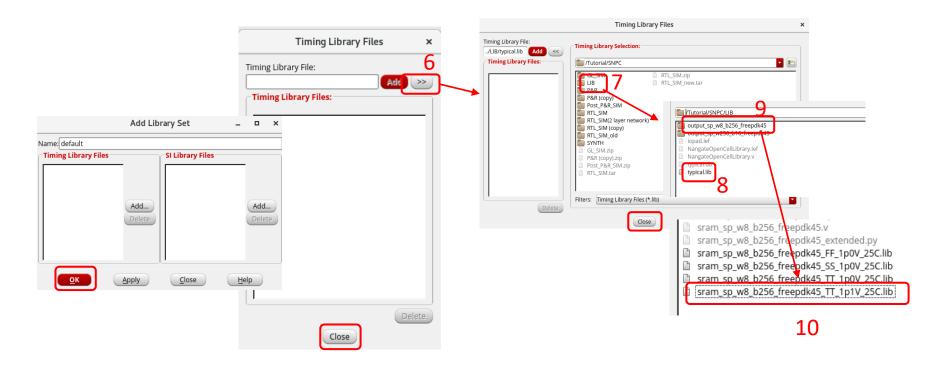
(1) Click on File -> (2) Import Design


Import design- Netlist File

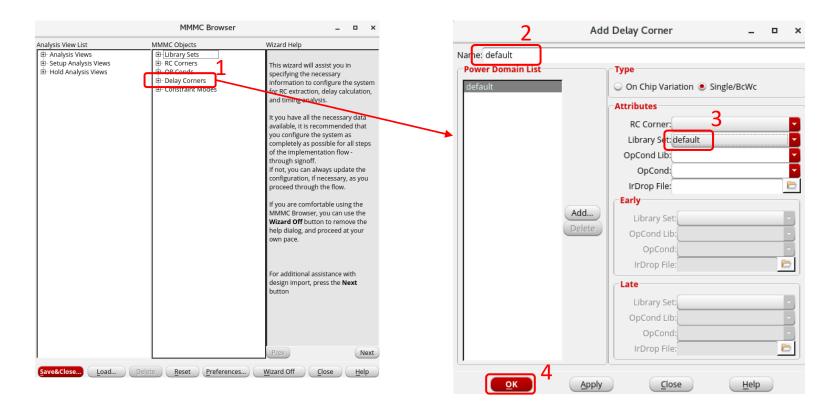
(1) Click **Files** to import the netlist. (2) Click on >> to expand. (3) Go to **./input_files** folder. (4) Double click on **SNPC_net.v**. (5) Click **Close** until you get to **Design import** window.

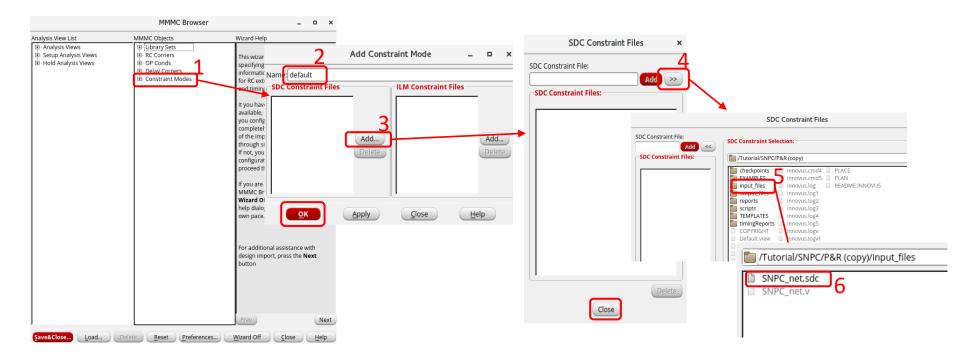

Import design- LEF Files

(1) In Top Cell: type SNPC. (2) Click on LEF files. (3) Click on ... to add LEF files (4) Click on >> to expand and go to ~/SNPC/LIB folder. (5) Double click on NangateOpenCellLibrary.lef and sram_sp_w8_b256_freepdk45.lef (6,7) Click Close until you get to the Design import window

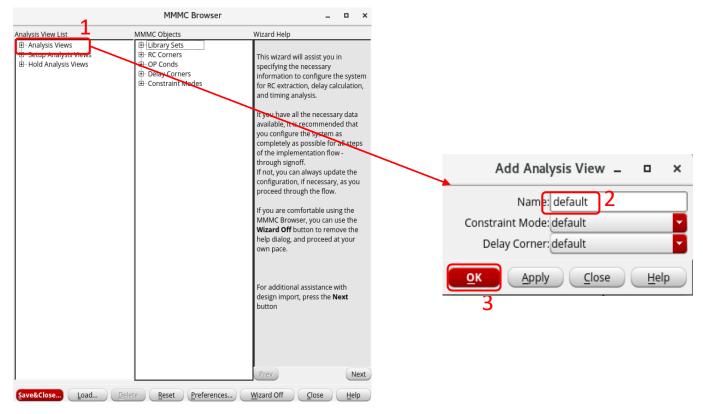


Import design- Analysis Setup (1/9)

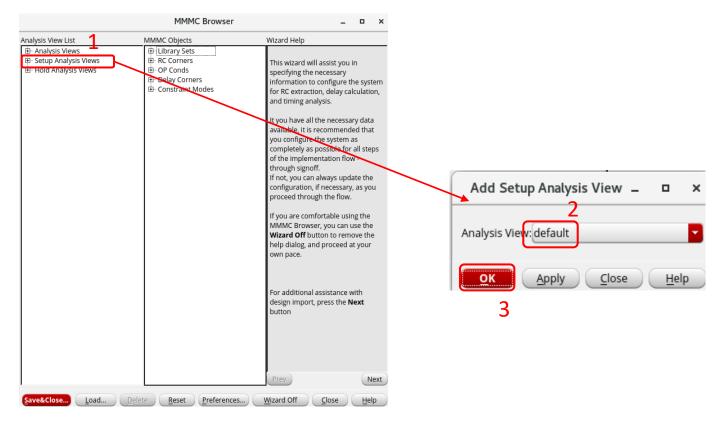

(1) Click on **Create Analysis Configuration**. (2) Double click on **Library Sets** in the **MMMC Browser window** (3) On the add *Library Set* window, type **default** in *Name* (4) Click on **Add**.


(7) In the *Timing Library* Window, go to **~/SNPC/LIB** and (8) select **typical.lib.** (9,10) select **Sram_sp_w8_b256_freepdk45_TT_1p1V_25C.lib.** Click **close**(*Timing Library Files*) and then **OK**(Add *Library Set*)

Import design- Analysis Setup (3/9)

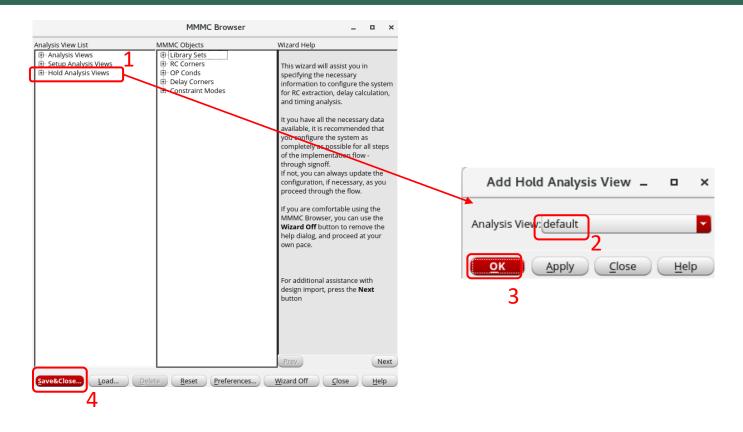

(1) Double click on **Delay Corners** in the *MMMC browser* window.
(2) On the *Add Delay Corner* window, type **default** in *Name*.
(3) Change the *Library Set* to **default**.
(4) Click **OK**

Import design- Analysis Setup (4/9)

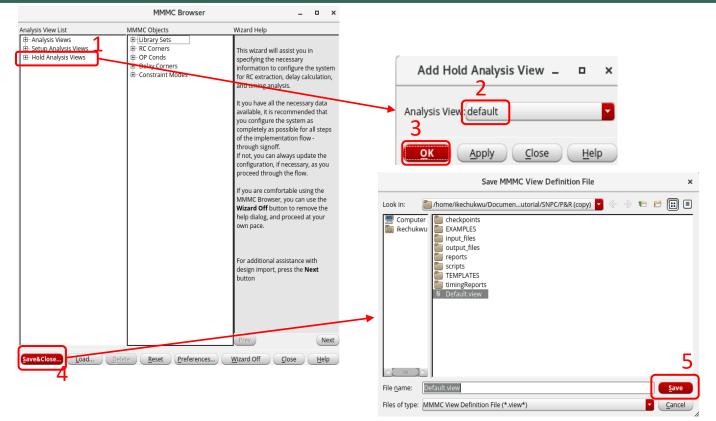

(1) Double click on *Constraint Modes* in the *MMMC browser* window. (2) On the *Add Constraint Mode* window, type **default** in *Name*. (3) Click on **Add**. (4) In the *SDC Constraint File* window, CLICK >> . (5,6) Go to ./input_files and select SNPC_net.sdc. Click Close(*SDC Constraint File* window) and then Ok (*Add Constraint Mode* window).

Import design- Analysis Setup (5/9)

(1) Double click on Analysis Views in the MMMC browser window
(2) On the Add Analysis View window, type default in Name
(3) Click OK


Import design- Analysis Setup (6/9)

(1) Double click on Analysis Views in the MMMC browser window
(2) On the Add Setup Analysis View window, type default in Name
(3) Click OK

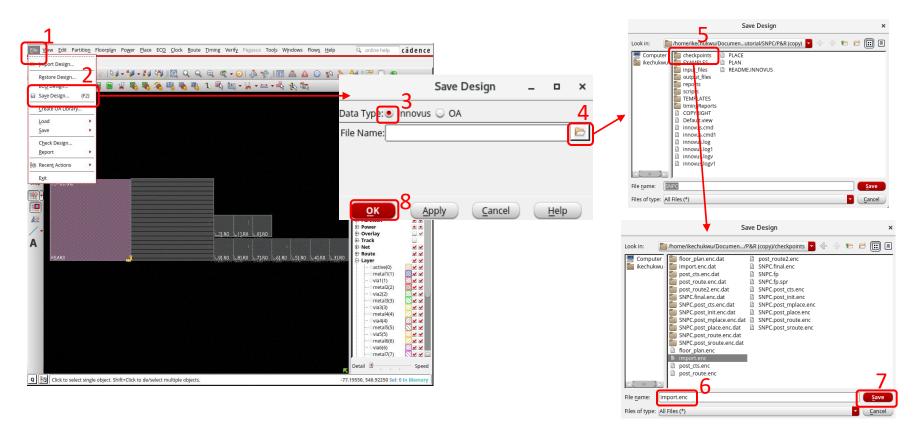


Import design- Analysis Setup (7/9)

(1) Double click on Setup Analysis Views in the MMMC browser window
(2) In the Add Setup Analysis View window, make sure that Analysis View is set to default (3) Click OK. (4) Click save&close.

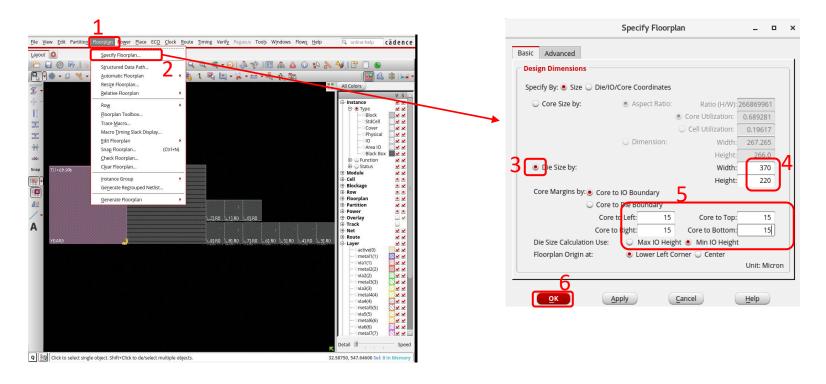
Import design- Analysis Setup (8/9)

(1) Double click on **Hold Analysis Views** in the *MMMC browser* window. (2) In the *Add Hold Analysis View* Window, make sure that *Analysis View* is set to **default**. (3) Click **OK**. (4) Click on **Save&Close...** in the *MMMC browser* window. (5) Click **Save**

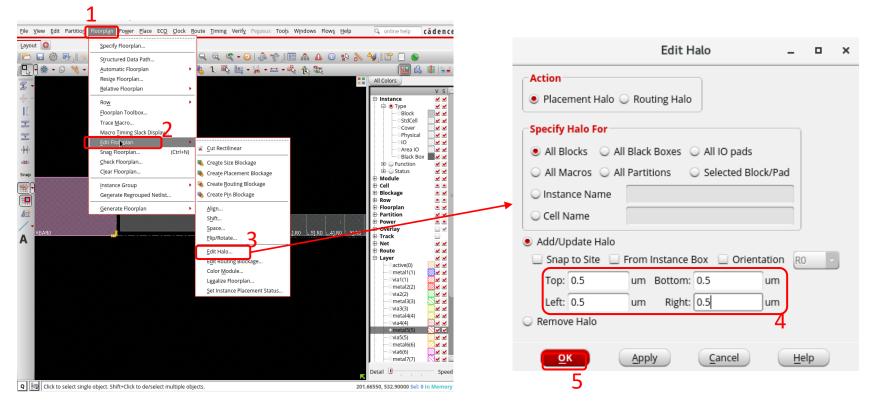


Design Import _ 🗖 🗙	<u>File View Edit Partition</u> Floorplan Power <u>P</u> lace ECO <u>Clock Route Timing Verify</u> Pegasus Tools Windows Flows <u>H</u> elp	Q online help	cādence
C Netlist:	Layout 💿		
	📔 🕢 🕸 🐘 🔊 🕜 😼 🐝 🖏 🔯 🔍 🔍 🔍 🔍 🔍 🕲 👘 📰 🏔 🛆 🛈 🐝 🗞	🛶 i 😁 📋 💿	
Verilog	🖳 🖯 🚸 + 🗅 👋 + 🔡 📓 🖌 🧞 🧞 🦓 🧞 🧠 🤱 🗞 🍓 1. 🔍 📖 + 🖌 + 🚔 + 🔩 🦍 🏣		. 🗊 📷 🗸
Files: /Tutorial/SNPC/P&R		All Colors	
Top Cell: Auto Assign 💿 By User: SNPC			V S 🛆
○ OA		🖻 Instance	× ×
Library:		Block	× ×
Cell:		StdCell Ocover	<u>v</u> v v v
View:		OPhysical	× × × ×
Technology/Physical Libraries:	chefts	OArea IO	
		🕀 🔘 Function	x x
	Snap TLI=68.99t	⊞- © Status ⊞- Module	× ×
Reference Libraries:		E Cell	
Abstract View Names:		⊞- Blockage ⊞- Row	• •
Layout View Names:		Floorplan Forplan Partition	• • •
LEF Files //LIB/output_sp_w8_b256_freepdk45/sram_sp_w8_b256_freepdk45.lef		Power	
r Floorplan	A.21,R0 h, 11,R0 h, 01,R0	⊞- Overlay ⊞- Track	
IO Assignment File:		⊞-Net ⊞-Route	× ×
	NEARO 1.9].RO 1.8].RO 1.6].RO 1.5].RO 1.4].RO 1.3].RO	🖹 🖹 Layer	× ×
Power		Oactive(0) Ometal1(1)	× ×
Power Nets: VDD		Ovia1(1) Ometal2(2)	X X X
Ground Nets: VSS		Ovia2(2) Ometal3(3)	
CPF File:		- via3(3)	X X
Analysis Configuration		Ometal4(4) Ovia4(4)	
MMMC View Definition File:/Default.view		Ometal5(5) Ovia5(5)	N N N
Create Analysis Configuration		Ovia6(6) Ometal7(7)	× ×
		Detail ()	Sneed
OK Save Load Cancel Help			
	Q Click to select single object. Shift+Click to de/select multiple objects.	3.21250, 395.73750 Sel: 0	In Memory

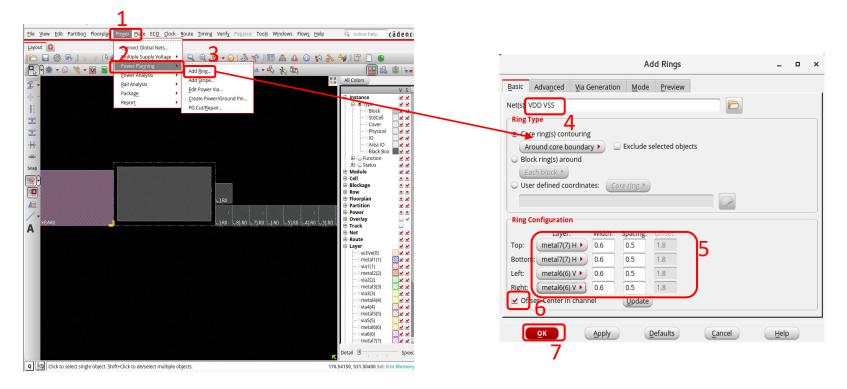
(1) Click Ok


Import Design- Checkpoint

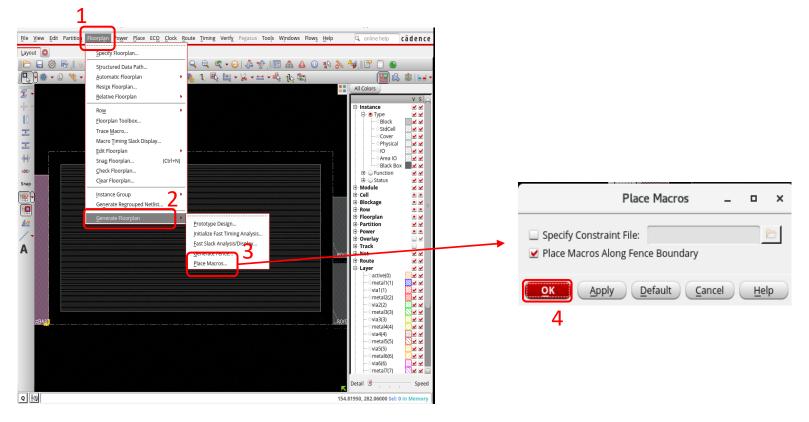
In the welcome screen, we can see the modules of SNPC before placement. We should save the progress at each step. (1) Click File-> (2) Save Design (3) Check Innovus (4) Click on the folder icon. (5) Select the checkpoints folder (6) Save file as import.enc (7) Save and click OK


Step 2: Specify Floorplan

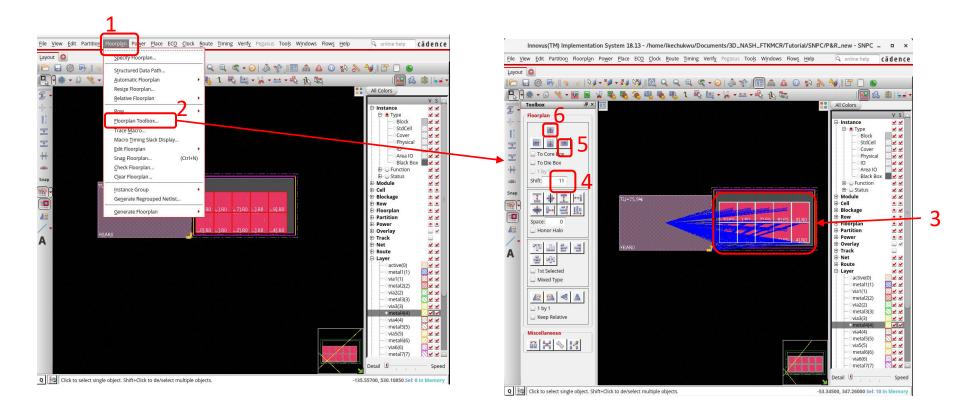
(1) In this step we specify the floorplan Click Floorplan-> (2) Specify Floorplan. (3)
 Check Die Size by. (4) Enter 370 for Width and 220 Height. (5) Enter 15 for • Core to
 Left • Core to Right • Core to Top • Core to Bottom. (6) Click OK


Step 3: Add Halo to Block

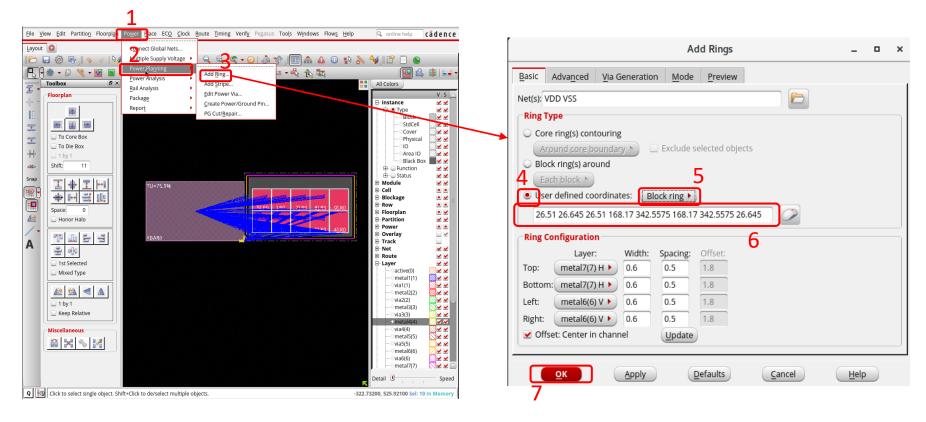
(1) In this step we specify the floorplan Click **Floorplan**->. (2) **Edit Floorplan. (**3) Click **Edit Halo** (4) Enter 0.5 for •**Top** • **Bottom** •**Left** •**Right. (**5) Click **OK**


Step 4: Add Core Rings

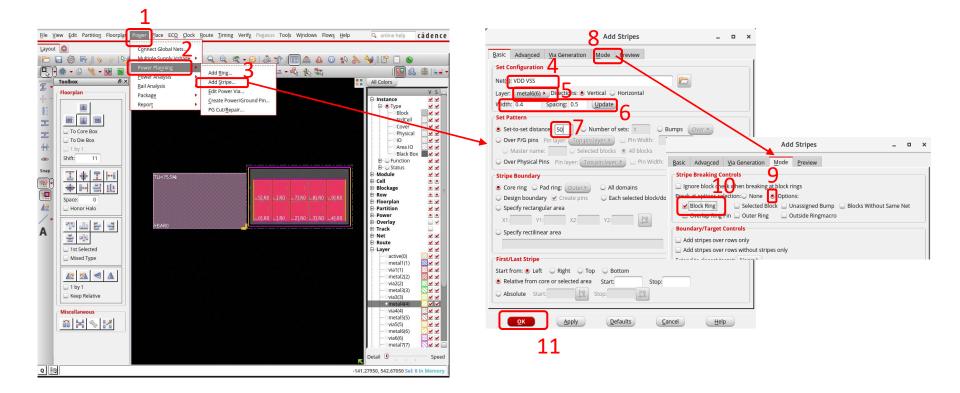
(1) In this step we specify the floorplan Click Power-> (2)Select Power Planning. (3)
Click Add Rings (4) Select VDD VSS. (5) Select metal7H for • Top and • Bottom (Layer), select metal6V for • LEFT and • Right (Layer). Enter 0.6 for Width and 0.5 for Spacing.
(6) Check Offset Center in Channel (7) Click OK


Step 5: Place Macro (1/2)

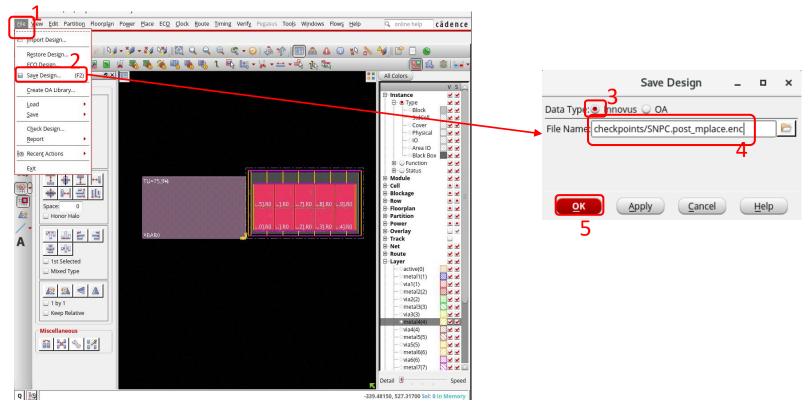
(1) Click on Floorplan (2) Select Generate floorplan. (3) Click on Place Macro.(4) Click OK


Step 5: Place Macro (2/2)

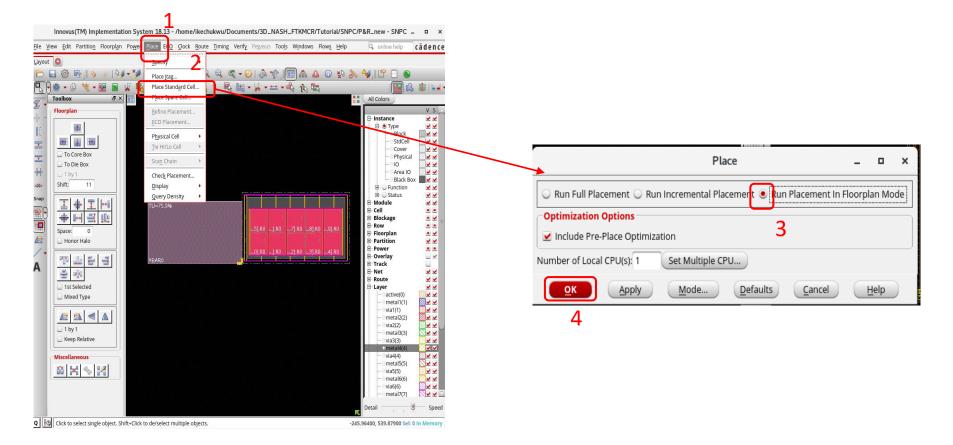
(1) Click on **Floorplan.** (2) Select **Floor Plan Toolbox**. (3) Select the SRAM macros by holding Ctrl and left clicking on them. (4) Set the **Shift** value to 11. (5) Click on the right arrow, and (6) the up arrow to shift once in each direction


Step 6: Add Block Rings

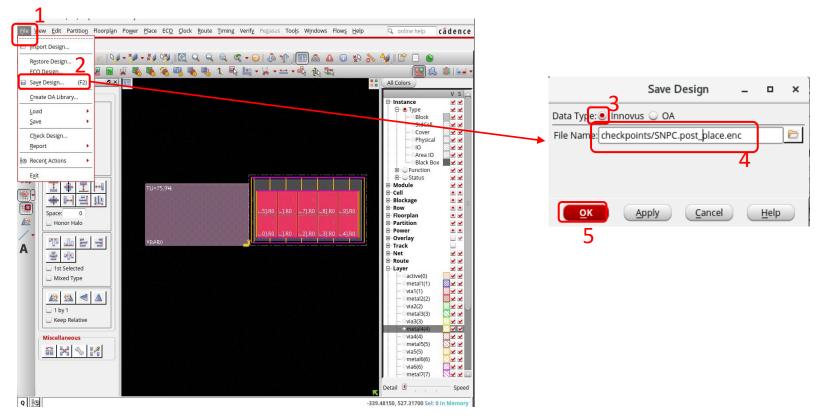
(1) In this step we specify the floorplan Click Power-> (2)Select Power Planning. (3) Click Add Rings (4) Select User defined coordinates. (5) Select Block ring. (6) Enter the values 26.51 26.645 26.51 168.17 342.5575 168.17 342.5575 26.245 for the clock ring coordinates. (7) Click OK


Step 7: Add Power Stripe

(1) Click on Power-> (2) Power Planning-> (3)Add Stripe. (4) Input VDD VSS in Nets(s): (5)
Change Layer to metal 6, (6) Set: • Width to 0.4 • Spacing to 0.5, (7) Change Set-to-setdistance to 50. (8) Click on Mode. (9) Check Options. (10) Check Block Rings. (11) Click OK

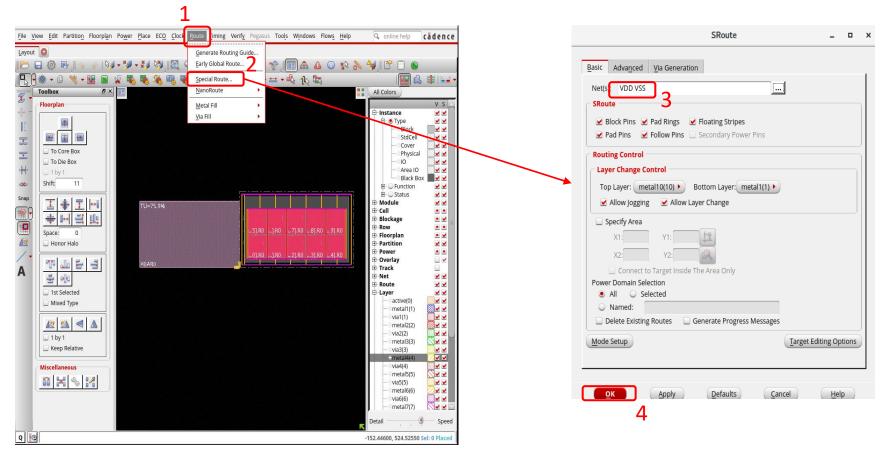

Save Design Progress- Checkpoint

In the welcome screen, we can see the floorplan and the placed macros. Save the progress. (1) Click File-> (2) Click on Save Design (3) select Innovus. (4) Enter the checkpoints directory, and save the design progress as SNPC.post_mplace.enc. (5) Click on OK

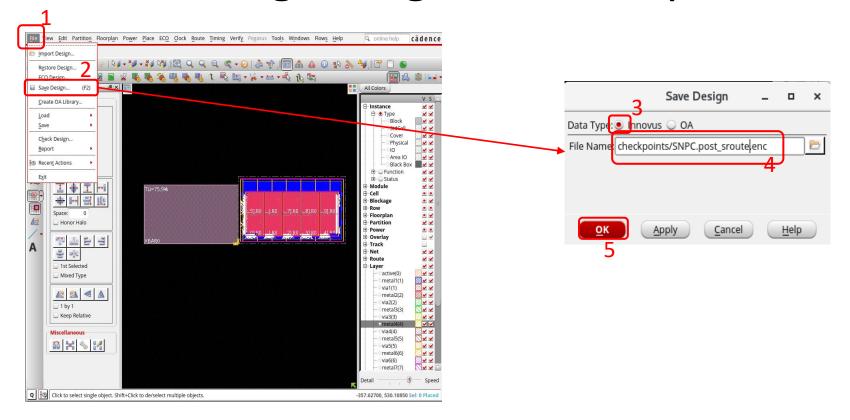


Step 8: Place Standard Cell

Now we place the SNPC modules on the die: (1) Click Place-> (2) Place Standard Cell. (3) select Run Placement in Floorplan Mode. (4) Click OK


Save Design Progress- Checkpoint

In the welcome screen, we can see the floorplan and the placed macros. Save the progress. (1) Click File-> (2) Click on Save Design (3) select Innovus. (4) Enter the checkpoints directory, and save the design progress as SNPC.post_place.enc. (5) Click on OK

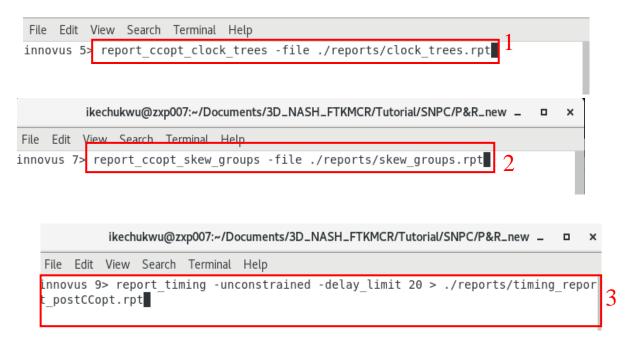


Step 9: Power Routing

(1) Click on Route-> (2) Special Route. (3) Input VDD VSS in Nets(s): (4) Click OK

Save Design Progress- Checkpoint

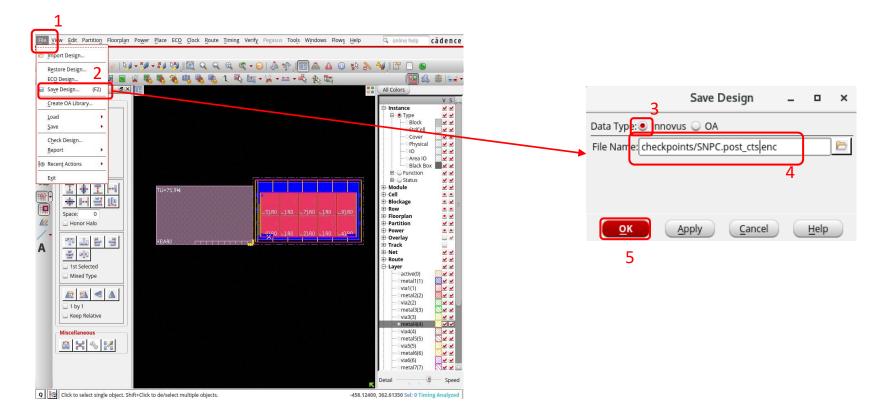
In the welcome screen, we can see the floorplan and the placed macros. Save the progress. (1) Click File-> (2) Click on Save Design (3) select Innovus. (4) Enter the checkpoints directory, and save the design progress as SNPC.post_sroute.enc. (5) Click on OK


Step 10: Clock Tree Synthesis

<pre>File Edit View Search Terminal Help innovus 2> setCTSMode -engine ccopt **WARN: (IMPCK-8086): The command setCTSMode is obsolete and will be removed i n the next release. This command still works in this release, but by the next re lease you must transition to the CCOpt-based CTS flow innovus 3> create_ccopt_clock_tree -name MY_CLK -source clk Extracting original clock gating for MY_CLK 2 clock_tree MY_CLK contains 400 sinks and 0 clock gates. Extraction for MY_CLK complete. Extracting original clock gating for MY_CLK done. innovus 4> ccopt_design 3</pre>	
<pre>**WARN: (IMPCK-8086): The command setCTSMode is obsolete and will be removed i n the next release. This command still works in this release, but by the next re lease you must transition to the CCOpt-based CTS flow innovus 3> create_ccopt_clock_tree -name MY_CLK -source clk Extracting original clock gating for MY_CLK 2</pre>	File Edit View Search Terminal Help
	<pre>innovus 2> setCTSMode -engine ccopt **WARN: (IMPCK-8080): The command setCTSMode is obsolete and will be removed i n the next release. This command still works in this release, but by the next re lease you must transition to the CCOpt-based CTS flow. innovus 3> create_ccopt_clock_tree -name MY_CLK -source clk Extracting original clock gating for MY_CLK 2 clock_tree MY_CLK contains 400 sinks and 0 clock gates. Extraction for MY_CLK complete. Extracting original clock gating for MY_CLK done</pre>

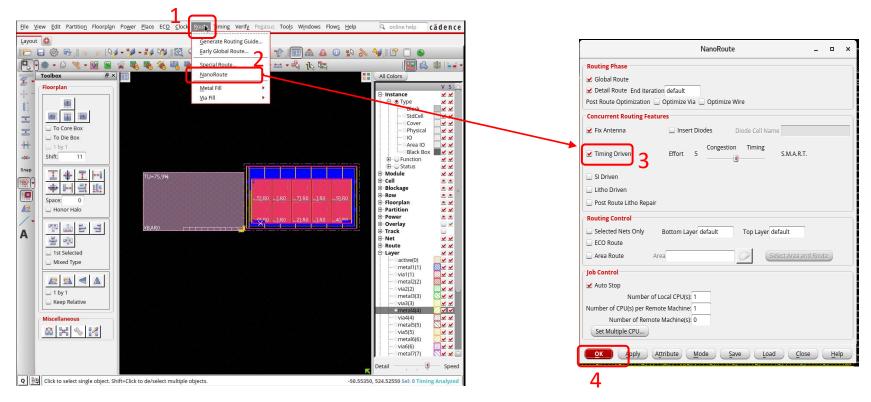
To perform the clock tree synthesis, we have to use the following commands on the terminal from which we launched innovus.

- (1) *setCTSMode* –*engine ccopt*
- (2) create_ccopt_clock_tree -name MY_CLK -source clk
- (3) ccopt_design

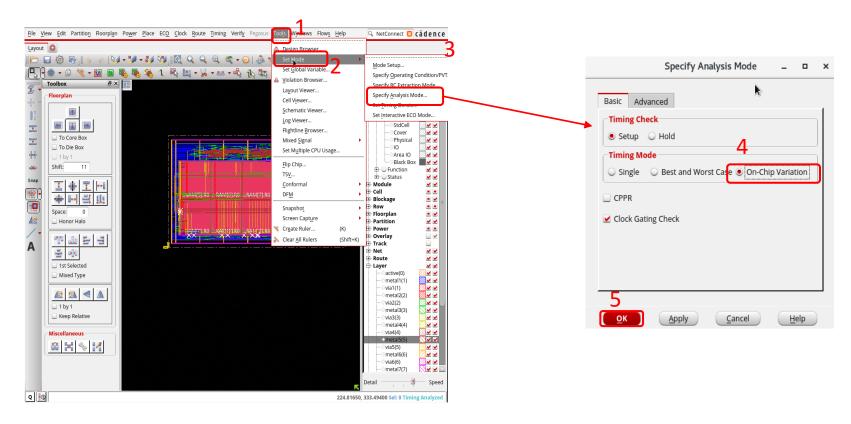

Step 10: Clock Tree Synthesis Report

To generate clock tree synthesis report, we have to use the following commands when the clock tree synthesis is complete.

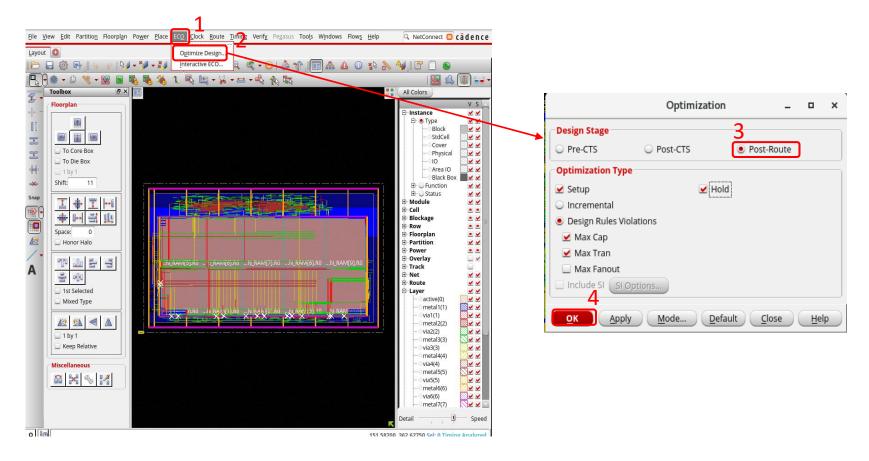
- (1) report_ccopt_clock_trees -file ./reports/clock_trees.rpt
- (2) report_ccopt_skew_groups -file ./reports/skew_groups.rpt
- (3) report_timing -unconstrained -delay_limit 20 >
- ./reports/timing_report_postCCopt.rpt


Save Design Progress- Checkpoint

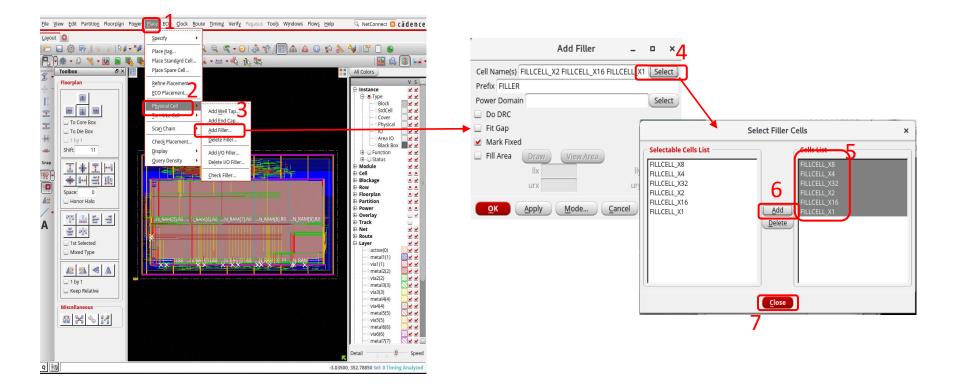
Save the progress. (1) Click **File**-> (2) Click on **Save Design** (3) select **Innovus.** (4) Enter the **checkpoints** directory, and save the design progress as **SNPC.post_cts.enc**. (5) Click on **OK**


Step 11: Global Route

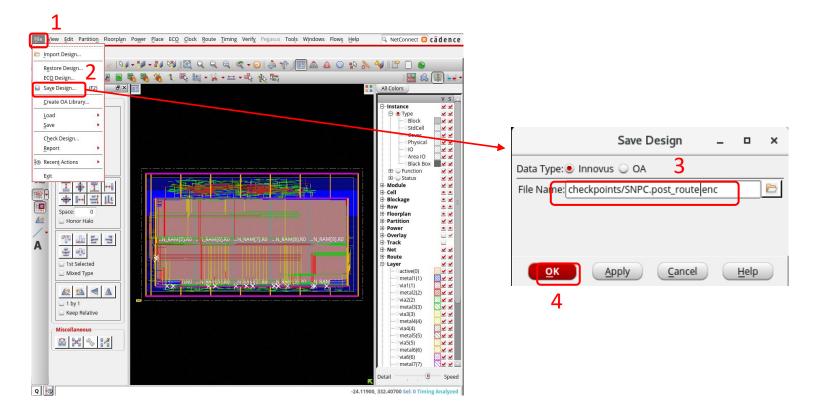
Perform early global route. (1) Click **Route**-> (2) Click on **Nanoroute** -> **Route...** (3) Check **Timing Driven**. (4)Click on **OK**


Step 12: Optimization-Setting

(1) Click on Tools-> (2) Set Mode-> (3) Specify Analysis Mode. (4)Check On-Chip Variation and then (5) Click OK

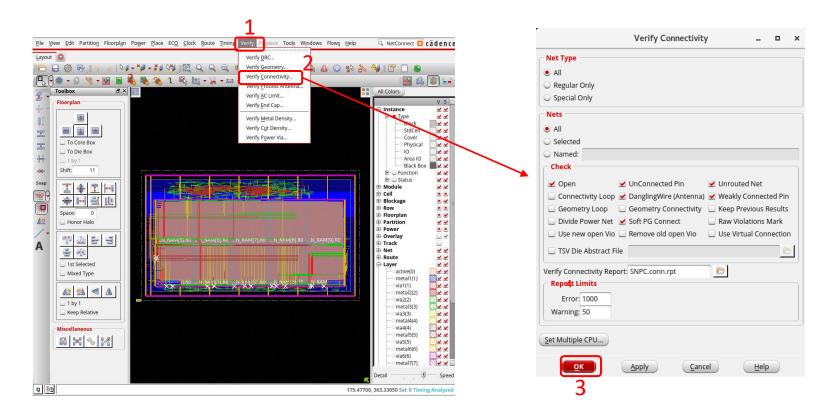

Step 12: Optimization

(1) Click on ECO-> Optimize Design. Check Post Route and then click OK

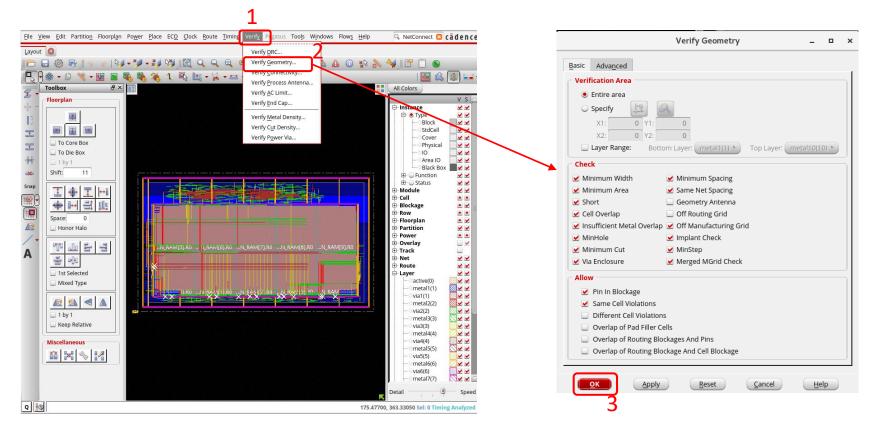


Step 13: Add Fillers

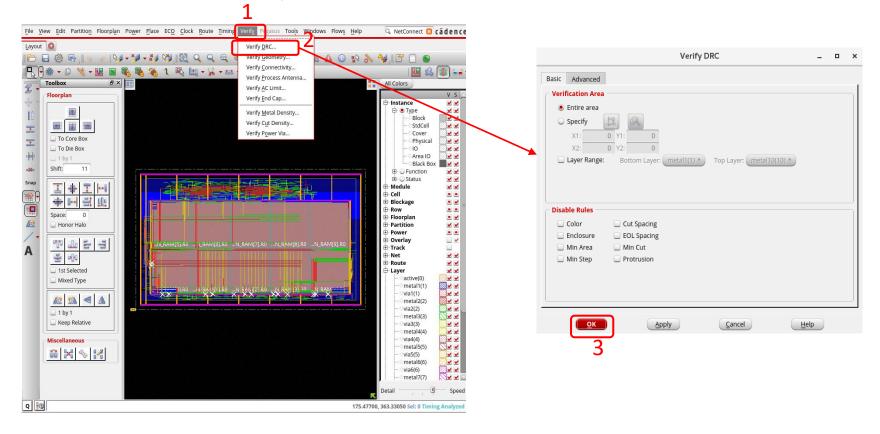
(1) Click on Place -> (2) Physical Cells-> (3) Add Filler. (4) Click Select. (5) Select FILLCELL_X1,2,4,8,16,32. (6) Click ADD. (7) Click Close. -> Click OK


Save Design Progress- Checkpoint

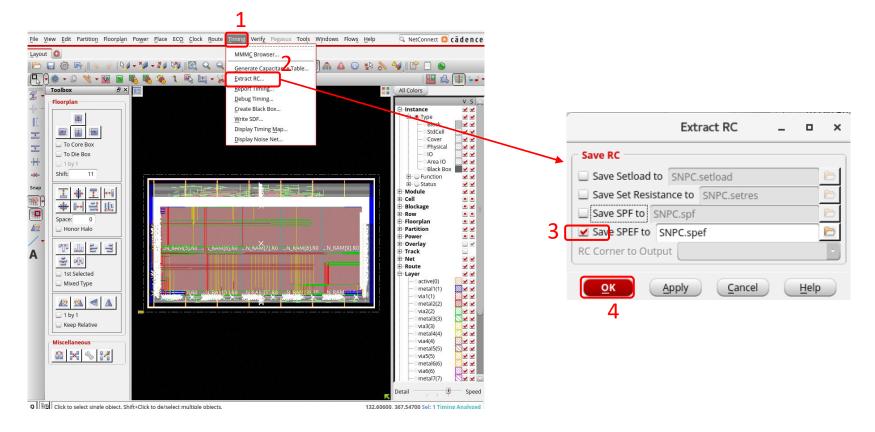
Save the progress. (1) Click File-> (2) Click on Save Design (3) Enter the checkpoints directory, and save the design progress as SNPC.post_route.enc. (4) Click on OK


Step 14: Verification- Connectivity

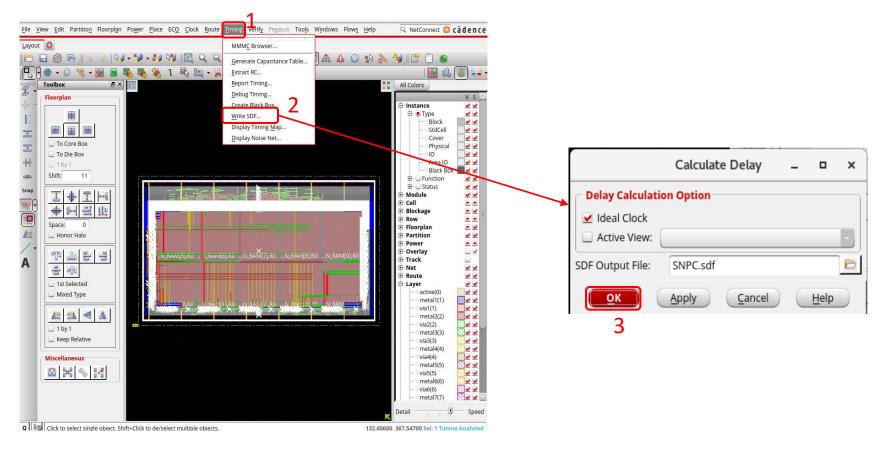
Verify Connectivity. (1) Click Verify-> (2) Click on Verify Connectivity. (3) Click on OK


Step 14:Verification- Geometry

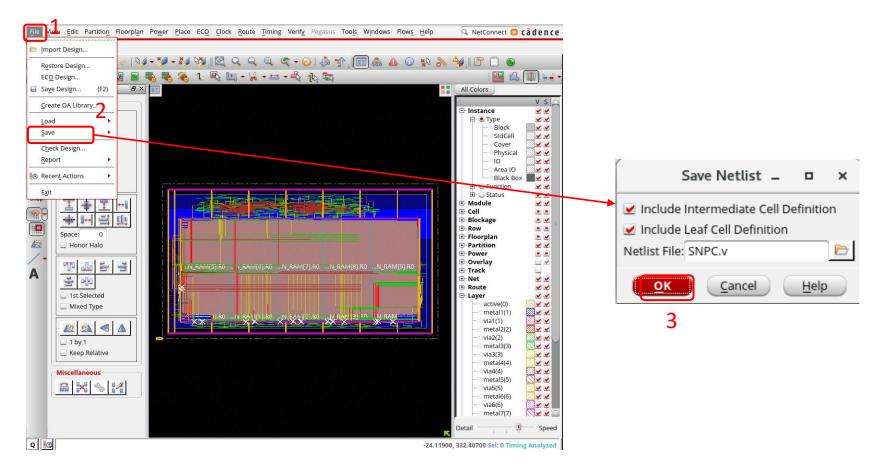
Verify Connectivity. (1) Click Verify-> (2) Click on Verify Geometry. (3) Click on OK


Step 14: Verification- DRC

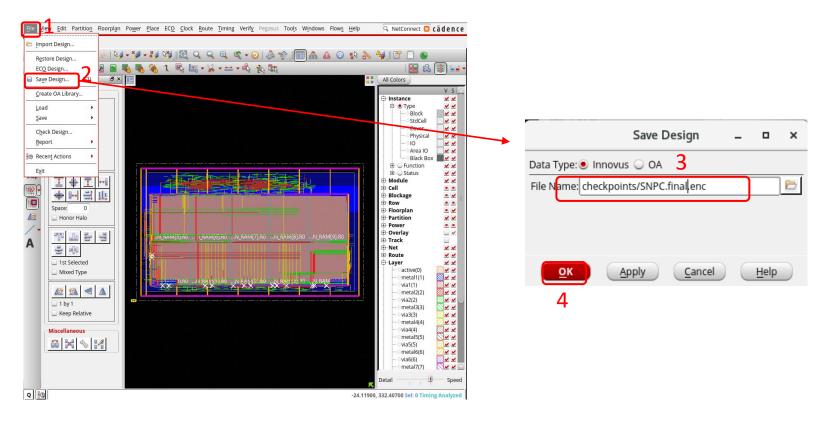
Verify Connectivity. (1) Click Verify-> (2) Click on Verify DRC. (3) Click on OK


Step 15: Output file- SPEF

Extract Output files: (1) Click on **Timing**-> (2) **Extract RC.** (3) Check **Save SPEF to**. (4) Click **OK**


Step 15: Output File- SDF

Extract Output files: (1) Click on Timing-> (2) Write SDF. (3) Click OK


Step 15: Output File- Netlist

Save the progress. (1) Click File-> (2) Click on Save-> Netlist (3) Click on OK

Save Final Design- Checkpoint

Save the progress. (1) Click File-> (2) Click on Save Design (3) Enter the checkpoints directory, and save the design progress as SNPC.final.enc. (4) Click on OK