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Research Areas
TR

Restoring grasping and movement for people with amputations and neurological impairment is imperative for retrieving
independence of amputees. Prosthetic limbs, which are becoming widespread therapeutic solutions, can significantly restore
grasping and improve the quality of life of people with amputations or nevrological disabilities. However, unlike living agents
that combine different sensory mputs to perform a complex task accurately, most prostheses use um-sensory input, offer
limited degrees of freedom and need long patient training.

Sensors enabling environmental perception and efficient control algorithms are needed since they strengthen the system's
reliability while reducing the cognitive burden for the amputees.

We study limb prostheses and anthropomorphic robotics based on non-invasive innovative neural interfaces and advanced
low-power neuromorphic SoC control for real-time communication and processing.

Currently, we develop adaptive neuromorphic multi-degree-of-freedom prosthesis limbs with tactile feedback to restore
grasping_and sensation for persons with amputation or neurclogical impairments. We use non-invasive technologies directly
interfacing the environment with the residual arm or legs.

Ultra Low-power Neuromorphic Systems and AI-Accelerators

Neuromorphic computing uses spiking neuron network models to solve machine learning problems in a more
power/energy-efficient way when compared to the conventional artificial neural networks.

We research adaptive low-power spiking neuromorphic systems and SoCs empowered with our earlier developed fault-
tolerant three-dimensional on-chip interconnect technology.

In particular, we mvestigate adaptive configuration methods to enable the reconfiguration of different network
parameters (spike weights, routing, hidden layers, topology. etc ), fault-tolerant and thermal-aware mapping methods,
and on-line learning algorithms.

Applications of our research range from anthropomorphic robotics to medical and energy management.

Fault-tolerant Interconnect Technologies for SoCs (2D, 3D, Si-Photonics, Hybrid)

Complex signal processing systems-on-chip contain dozens of components made of processor cores, DSPs, memory,
accelerators, and I/Os, all integrated into a single die area of just a few square millimeters. Such complex systems need a
novel on-chip mnterconnect closer to a sophisticated network than current bus-based solutions. This network must
provide high throughput and low latency while keeping area and power consumption low.

We investigate and develop advanced interconnect technology for embedded multicore SoCs targeting both FPGA and
ASIC platforms. In particular, we mnvestigate 3D-TVS integration, fault tolerance methods, photonic communication
protocols, low-power mapping techniques, and low-latency adaptive routing.
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Fig. 5: System architecture: (a) 3DNoC-SNN organization, (b) Multicast
router architecture (MC-3DR), (c) Spiking neuron processing core (SNPC).
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Al Thermal-Aware Mapping Method for 3D-NoC Neuromorphic System
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AL Thermal-Aware Mapping Method for 3D-NoC Neuromorphic System
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A3 3-D IC-based Stacking Synaptic Memory for Spiking Neural Networks

| RINA X2

DABAYXTGT - FTTFa49v9 - AE—

The idea is to distinguish the critical levels of synaptic weights and then isolate them using stacking layers of 3-D architectures. Hence, applying the low-
power techniques for low-important bits to gain power efficiency.
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A3 3-D IC-based Stacking Synaptic Memory for Spiking Neural Networks
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Al Off-Grid Energy Storage Solar Carport.
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aggregator, (b) AEBIS, (c) optimized AEBIS (O-AEBIS).
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Fig. 5. A demonstration of the energy management system based on
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Name BRAM_ISK | DSP48E | FF LUT
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Fig. 6. Hardware complexity of power consumption

prediction system on the Zyng-7010 FPGA. The system
utilized 3% of the FF, 11% of the LUT, 6% of the DSP48,
and approximately 1% 18k BRAM.
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Off-Grid Energy Storage Solar Carport.
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Neuromorphic Robot Arm and Prostheses
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FIGURE 4. The Neuromorphic AlzuHand target applications. (1) Remote Robot Surgery, (2) Breast Palpation, (3) Finger Reha-
bilitation, (4) Voice and EMG-based Prosthetic Hand.

Abderazek Ben Abdallah, Huankun Huang, Nam Khanh Dang, Jiangning Song, “Al7 O+zy4

AlzuHand I, July 2022

[Al Processor]," ###52020-194733 (2020 #11 524 H)

Device Name: ATzuHand I

Total Weight: 422¢g (276g without controller)
Control: sSEMG

DoF: 5

Feedback: No

Related patent: 45 [f82019-124541

Contact "benab(at)u-aizu.ac.jp"

https://www.u-aizu.ac.jp/misc/neuro-eng/aizuhand.html



AlzuHand for Autonomous Painting
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Al model for predicting power generation amount using weather maps
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