2nd Symposium on AI Center, December 8, 2018, The University of Aizu

Artificial Intelligence Chips: From Data Centers to Edge and IoT Computing

Abderazek Ben Abdallah Adaptive Systems Laboratory benab@u-aizu.ac.jp

Al Hardware is ... everywhere

Self-driving Car

Bottom Image source: edition.cnn.com

Smart Robots

Image source: roboticsbusinessreview.com

Machine Translation

Bottom Image source: missqt.com

Gaming

Bottom Image Source: newatlas.com

Al Hardware is ... everywhere

Bottom Image source: edition.cnn.com

Smart Robots

Image source: roboticsbusinessreview.com

Bottom Image source: missqt.com

Al Hardware is ... everywhere

Brain implant allows paralysed monkey to walk

There really is a kind of intelligence inside the spinal cord. We are not just talking about reflexes that automatically activate muscles. In the spinal cord there are networks of neurons able to take their own decisions

-Grégoire Courtine-

Neuroscientist, Federal Institute of Technology, Lausanne

PARALYSED PRIMATES WALK

A wireless implant bypasses spinal-cord injuries in monkeys, enabling them to move their legs.

Nature volume539, pages284–288 (10 November 2010)

Al Revenue &

GDP Growth Rate in 2035 comparing Baseline Growth to Al scenario

Artificial Intelligence Revenue, World Markets: 2016-2025

Annual growth rates in 2035 of gross value added (a close approximation of GDP), comparing baseline growth in 2035 to an artificial intelligence scenario where AI has been absorbed into the economy Source: Accenture and Frontier Economics

Source: https://semiengineering.com/what-does-an-ai-chip-look-like/

Al Revenue &

GDP Growth Rate in 2035 comparing Baseline Growth to Al scenario

Artificial Intelligence Revenue, World Markets: 2016-2025

Annual growth rates in 2035 of gross value added (a close approximation of GDP), comparing baseline growth in 2035 to an artificial intelligence scenario where AI has been absorbed into the economy Source: Accenture and Frontier Economics

Baseline Al steady rate

Source: https://semiengineering.com/what-does-an-ai-chip-look-like/

Al Revenue &

GDP Growth Rate in 2035 comparing Baseline Growth to Al scenario

Governments are competing to establish advanced AI research, seeing AI as a way for greater economic power and influence.

Source: CBINSPIGHTS 2018

Agenda

Fundamental Trends

- AI The 4th Industrial Revolution
- Survey of Al Hardware
 - Cloud AI Hardware, Chips
 - ➢ Mobile AI Chips
 - Edge and IoT AI Chips
 - Healthcare AI Chips
- Conclusions

8

Moore's law is no longer providing more Compute

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-55.

Moore's law is no longer providing more compute

****Dennard scaling**: As transistors get smaller their power density stays constant, so that the power consumption stays in proportion with area: both voltage and current scale (downward) with length (WP).

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-4 3

Moore's law is no longer providing more compute

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50- 9

Technology Transformation

Massive amounts of data is generated

A new style of IT emerging

Source: https://practicalanalytics.files.wordpress.com/2012/10/newstyleofit.jpg

12

DNN Compute Requirements is SteadilyGrowing

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1 M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5 G	1.43G	3.9G

Source: Joel Emer, ISCA Tutorial, 2017

What does it mean ?

Current State of the Art in Neural Algorithms HW Computing

Current State of the Art in Neural Algorithms HW Computing

CPUs, GPUs, FPGAs or ASICs ?

The only tricky part is getting them to do AI computation quickly and efficiently.

Hardware: Flexibility vs Efficiency

Deployment alternatives for deep neural networks (DNNs) and examples of their implementations. (Image courtesy of Microsoft.)

Agenda

Fundamental Trends

AI – The 4th Industrial Revolution

• Survey of Al Hardware

Cloud AI Hardware, Chips

- ➢ Mobile AI Chips
- Edge and IoT AI Chips
- Healthcare AI Chips
- Conclusions

19

Four Main Factors in Promoting AI/AI HW

Hardware & Data Enable DNNs

AI model performance scales with dataset size and the *#* of model parameters, thus necessitating more compute.

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

AI HW is inspired by Nature – Biological neuron AI Chips and systems are inspired

AI HW is inspired by Nature – Biological neuron

AI Chips and systems are inspired by biology → parallel computation.

Latest digital DL processors:

~10TOPS/W

=1~10 POPS/W

- ★ # of neurons: ~10¹¹
 Synapse op. in brain: 0.1~1 fJ/op
 1,000~10,000 TOPS/W
- # of synapses: ~ 10^{15}
- ✤ Power consumption: ~ 20 W;
- ✤ Operating frequency: 10~100 Hz
- Works in parallel: 10⁶ parallelism vs. <10¹ for PC (VN)
- Faster than current computers: i.e. simulation of a 5 s brain activity takes
 ~500 s on state-of-the- art supercomputer

...there are many topologies for mimicking the brain functions

23

Different approaches to AI Chips

24

Current AI Chip = Accelerator/Co-processor

Accelerator Characteristics

fp32

...Deep Leering is considered as a sophisticated "rocket" of Machine Learning!!

- 1. "Deep Learning" means using a neural network with <u>several layers of nodes</u> between input & output
- the series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

Example1: Character Recognition on FPGA

Memory	DSP Block	Power Consumption	
4,956 (1%)	54 (77%)	286.84 mW	

Example2: Handwriting Digit Recognition on FPGA

Example of Neural Network

Example of Neural Network

Example of Neural Network

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

 $\mathbf{y} = f(\mathbf{x})$

Parallel computing techniques are needed to speed up <u>matrix operations</u>

b 2 b

DL is Computationally Expensive

- The two phases of NN are called *training* (or learning) and *inference* (or prediction), and they refer to development versus production.
- The Developer chooses the number of layers and the type of NN, and training determines the weights.
- Virtually all training today is in floating point.
- A step called *quantization* transforms floating-point numbers into narrow integers—often just 8 bits—which are usually good enough for inference.
- 8-bit integer multiplies can be 6X less energy and 6X less area than IEEE 754 16-bit FPMs, and the advantage for integer addition is 13X in energy and 38X in area [Dal16].37
A more biological version: LIF/SRM Model

A more biological Model: Molecular Basis

Electronic devise vs chemical device

- Deliver the concentration difference of K+,Na+
- Action potential \sim 70 mV
 - Extreme low voltage operation
 - > Noise problem
 - Multiple signal input/ integration
- Spatial and temporal multiplexing → Active sharing of the interconnect
- Chemical computing, extremely low operation voltage (<100mV) → Low power

Hodgkin-Huxley Model

Hodgkin-Huxley Model

Action Potential (Synapse) Storage

The electrical resistor is not constant but depends on the history of current that had previously flowed through the device.

Voltage pulses can be applied to a memristor to change its resistance, just as spikes can be applied to a synapse to change its weight.

Wiring via AER – address Event Representation

43

Spike-timing-dependent plasticity (STDP)

- Adjusts the strength of connections between neurons in the brain.
 - ✓ Adjusts the connection strengths based on the relative timing of a particular neuron's output and input action potentials.

Agenda

47

- Fundamental Trends
- AI The 4th Industrial Revolution
- Survey of AI Hardware
 - Cloud AI Hardware, Chips
 - ➢ Mobile AI Chips
 - Edge and IoT AI Chips
 - Healthcare AI Chips
- Conclusions

Big Corps Al Chips

46

[source: medium.com]

assistant Echo to make Alexa

faster and smarter.

The are two AI Chip Models: ANN and SNN

- The output of ANN Chip depends only on the current stimuli, the output of SNN depends on previous stimuli also
- The SNN/Neuromorphic Chip operates on biology-inspired principles to improve performance and increase energy efficiency

Training & Inference

Neuromorphic/SNN AI-Chips

- Neuromorphic Sensors electronic models of retinas and cochleas.
- **Smart sensors** tracking chips, motion, pressor, auditory classifications and localization sensors.
- Models of specific systems: e.g. lamprey spinal cord for swimming, electric fish lateral line.
- Pattern generators for locomotion or rhythmic behavior
- Large-scale multi-core/chip systems – for investigating models of neuronal computation and synaptic plasticity.

Neurogrid (Stanford) TrueNorth (IBM)

Brainscales/HBP (Heidelberg, Lausanne) SpiNNaker (Manchester)

Example Loihi Al-Chip - a 60-mm2 chip fabricated in Intel's 14-nm

M. Davieset al., "Loihi: A Neuromorphic Manycore Processor with On-Chip Learning," IEEE Micro, vol. 38, no. 1, pp. 82-99, January/February 2018

Cloud AI-Chips

Acceleration enterprise AI with DL Cloud

Custom ASIC: Tensor Processing Unit (TPU)

TPU is deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NNs).

Floor Plan of TPU die

TPU Printed Circuit Board

Source: TensorFlow.org

Source: In-datacenter Performance Analysis of a Tensor Processing Unit Jouppi et al, ISCA, 6/2017

Custom ASIC: Tensor Processing Unit (TPU)

TPU is deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NNs).

Google's first Tensor Processing Unit (TPU) on a printed circuit board (left); TPUs deployed in a Google datacenter (right)

Source: <u>cloud.google.com</u>

- The TPU board can perform 92 TeraOps/s (TOPS). It is **15 to 30 times faster than CPUs and GPUs** tasked with the same work, with a 30- to 80-fold improvement in TOPS/W.
- The software used for comparison of systems was the TensorFlow framework.

Experience Cloud TPU: https://github.com/tensorflow/tpu https://cloud.google.com/tpu/docs

Source: In-datacenter Performance Analysis of a Tensor Processing Unit Jouppi et al, ISCA, 6/2017

Custom ASIC: Tensor Processing Unit (TPU)

TPU is based on the Systolic Array Idea

The matrix unit uses systolic execution to save energy by reducing reads and writes of the **Unified Buffer.**

Benefit: Maximizes computation done on a single piece of data element brought from memory.

Ā	Interf. 2%	(4Kx256x32b =4 MiB) 6%	A
M port	Control 2%	Activation Pipeline 6%	M port
ddr3 3%	PCIe Interface 3%	Misc. I/O 1%	ddr3 3%

TPU is based on the Systolic Array

Systolic data flow of the Matrix Multiply Unit.

Done

SW has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs.

Similar to blood flow: heart -> many cells -> heart Memory: heart Data: blood PEs: cells

Figure 1. Basic principle of a systolic system.

H.T. Kung, "Why systolic architectures?" IEEE Computer 1982)

Source: In-datacenter Performance Analysis of a Tensor Processing Unit Jouppi et al, ISCA, 6/2017

Systolic arrays for DNN acceleration (Ex. TPU)

Ref. Azghadi2020 IEEE TRABS ON BIOMEDICAL CIRCUITS AND SYSTEMS

56-1

NN Training Works with Low-precision FP

fp32: Single-precision IEEE Floating Point Format

fp16: Half-precision IEEE Floating Point Format

	-	Expo	nent:	5 bits		4		Ма	ntissa	(Sign	ificand	5): 10	bits		
s	Е	Е	Е	Е	Е	м	М	м	м	м	м	М	м	м	М

Range: 10^-8 to 65504

bfloat16: Brain Floating Point Format

	-		E	xpone	nt: 8 t	oits				Manti	ssa (S	Signific	and):	7 bits	<u> </u>
s	Е	Е	Е	Е	Е	Е	Е	Е	М	М	М	М	М	М	м

Range: (10⁻⁴⁵) to (10³⁸)

- Represent the same range of numbers of fp32 just at a much lower position.
- It turns out that we don't need all that precision for NN training, but we do actually need all the range.

NN Training Works with Low-precision FP

- One technique exploited by the new chips is using **lowprecision**, often fixed-point data, **eight bits** or even fewer, especially for inference.
- One of the major open questions in all of this as far as hardware accelerators are concerned is how far can you actually push this down without losing classification accuracy?
- Results from **Google, Intel, and others** show that such low-precision computations can be very powerful when the data is prepared correctly, which also opens opportunities for novel electronics.

What are the differences between the three TPUs

What are the differences between the three TPUs

TPU Performance on three Popular NNs

- Multi-Layer Perceptrons (MLP)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)

Name LOC			L	Layers			Nonline ar	Weichte	TPU Ops /	TPU Batch	% of Deployed	
		FC	Conv	Vector	Pool	Total	function	weignis	Weight Byte Size		TPUs in July 2016	
MLP0	100	5				5	ReLU	20M	200	200	61%	
MLP1	1000	4				4	ReLU	5M	168	168		
LSTM0	1000	24		34		58	sigmoid, tanh	52M	64	64	2004	
LSTM1	1500	37		19		56	sigmoid, tanh	34M	96	96	2970	
CNN0	1000		16			16	ReLU	8M	2888	8	50/	
CNN1	1000	4	72		13	89	ReLU	100M	1750	32	J70	

Tensor Processing Unit (TPU) with MLP, CNN, RNN)

						Die					Benchmarked Servers				
Model			MIL-	מתד	Me asure d		TOPS/s		CD/a	On-Chip	Diag	DPAM Size	מרוד	Meas	sured
		nm	IVII1Z	IDF	Idle	Busy	8b	FP	GD/S	Memory	Lies		IDF	Idle	Busy
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	2	256 GiB	504 W	159W	455W
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W		2.8	160	8 MiB	8	256 GiB (host) + 12 GiB x 8	1838W	357W	991 W
TPU	NA*	28	700	75W	28W	40 W	92		34	28 MiB	4	256 GiB (host) + 8 GiB x 4	861 W	290W	384 W

Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. Haswell has 18 cores, and the K80 has 13 SMX processors.

Source: In-datacenter Performance Analysis of a Tensor Processing Unit, Jouppi et al, ISCA, 6/2017

TPU Relative Performance/Watt

Quantifying the performance of the TPU, our first machine learning chip: https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html

61

NVIDIA's Volta GPU is Specially Designed for Al

- NVIDIA's Volta GPU is specially designed for ML, and it offers 100 TFLOPS of DL performance, according to the company.
- GPUs were built for graphics workloads and *evolved* for high performance computing and AI workloads
- While GPUs are used extensively for training, they're not really needed for inference

NVIDIA's Volta GPU architecture is specially designed for AI. (Image courtesy of NVIDIA.)

The HGX-2, announced at NVIDIA GTC May 2018

Multi-precision computing platform for scientific computing (high precision) and AI workloads (low precision).

NVIDIA's GPU Performance

30x Higher Throughput than CPU Server on Deep Learning Inference

At Facebook, for example, primary use case of GPUs is offline training rather than serving real-time data to USERS

Offline training uses a mix of GPUs and CPUs

Service	Resource	Training Frequency	Training Duration
News Feed	Dual-Socket CPUs	Daily	Many Hours
Facer	GPUs + Single-Socket CPUs	Every N Photos	Few Seconds
Lumos	GPUs	Multi-Monthly	Many Hours
Search	Vertical Dependent	Hourly	Few Hours
Language Translation	GPUs	Weekly	Days
Sigma	Dual-Socket CPUs	Sub-Daily	Few Hours
Speech Recognition	GPUs	Weekly	Many Hours

TABLE II

FREQUENCY, DURATION, AND RESOURCES USED BY OFFLINE TRAINING FOR VARIOUS WORKLOAD

However, online training is CPU-heavy

Services	Relative Capacity	Compute	Memory
News Feed	100X	Dual-Socket CPU	High
Facer	10X	Single-Socket CPU	Low
Lumos	10X	Single-Socket CPU	Low
Search	10X	Dual-Socket CPU	High
Language Translation	1X	Dual-Socket CPU	High
Sigma	1X	Dual-Socket CPU	High
Speech Recognition	1X	Dual-Socket CPU	High

facebook research TABLE III RESOURCE REQUIREMENTS OF ONLINE INFERENCE WORKLOADS.

GPUs & ASICs Renting Cost Per Hour

Mobile AI-Chips

Mobile Al-Chips

- Much of the data captured by the smartphone, including images, video, and sound, is unstructured.
- Training and Inference are Two Vital Components of AI on Smartphones.
- Unlike structured data information with a degree of organization unstructured data makes compilation a time- and energy-consuming task.
- Huawei's Kirin 970 chipset comes with its own **neural processing unit (NPU).**
- Huawei has it own APIs that developers need to use to tap the power of the "neural" hardware.
- Google has it mobile AI framework TensorFlow Lite.

8-Core CPU	12-Core GPU		
up to 2.4GHz	Mali G72MP12		
Kirin NPU	Image DSP		
1.92T FP16 OPS	512bit SIMD		
Hi-Sili	con Al		
Global-Mode Modem	Dual Camera ISP		
1.2Gbps@LTE Cat18	with face & motion detection		
4K Video	HiFi Audio		
нDR10	32bit / 384k		
LPDDR 4X	UFS 2.1		
i7 Sensor Processor	Security Engine inSE & TEE		

Source: Huawei, 2017

Huawei Kirin 970

Summary of Mobile Al Chips

	System-on-chip (SoC)	A11 Bionic	A12 Bionic	Kirin 970	Kirin980		
	Supplier	Ap	ple	Hisil	licon		
	Released date	9.12	.2018	8.31.2018			
Design	64 Bit			Yes			
	manufacturing process	10 nm TSMC	7nm TSMC	10nm TSMC	7nm TSMC		
	Transistors	4.3 billion	6.9 billion	5.5 billion	6.9 billion		
	CPU Cores	2+4	2+4	4+4	2+2+4		
	Performance CPU	Monsoon	New CPU× 2 + 15% performance	Cortex-A73 × 2	Cortex-A76 (2.6GHz) × 2 + Cortex-A76 (1.92GHz) × 2		
СРО	Efficiency CPU	Mistral × 4	New CPU× 4 + 50% efficiency	Cortex-A53 × 4	Cortex-A55 × 4		
	Max Clock (GHz)	2.4	N/A	2.4	2.6		
CDU	GPU	Internally-designed GPU	Internally-designed GPU	Mali-G72 MP12	Mali-G76		
GPO	GPU Cores	3	4	12	10		
	AI Processor	2-core Neural Engine	8-core Neural Engine	NPU	Dual NPU		
AI Accelerator	Performance	600 billion operations per second	5 trillion operations per second	2005 pictures per minute	4500 pictures per minute		
	Ram Interface	LPDDR4X	LPDDR4X	LPDDR4x	LPDDR4X		
Memory	Ram Frequency	N/A	N/A	1833	2133		
	Max Bandwidth	N/A	N/A	29.9	34.1		

Summary of Mobile AI Chips

	System-on-chip (SoC)	A11 Bionic	A12 Bionic	Kirin 970	Kirin980		
	Supplier	Ap	ple	Hisil	licon		
	Released date	9.12	.2018	8.31.2018			
Design	64 Bit			Yes			
	manufacturing process	10 nm TSMC	7nm TSMC	10nm TSMC	7nm TSMC		
	Transistors	4.3 billion	6.9 billion	5.5 billion	6.9 billion		
CPU	CPU Cores	2+4	2+4	$\angle_{0} + \angle_{0}$	2+2+4		
	Performance CPU	Monsoon	New CPU× 2 + 15% performance	Cortex-A73 × 2	Cortex-A76 (2.6GHz) × 2 + Cortex-A76 (1.92GHz) × 2		
	Efficiency CPU	Mistral × 4	New CPU× 4 + 50% efficiency	Cortex-A53 × 4	Cortex-A55 × 4		
	Max Clock (GHz)	2.4	N/A	2.4	2.6		
CDU	GPU	Internally-designed GPU	Internally-designed GPU	Mali-G72 MP12	Mali-G76		
GPU	CDU Corres	2	,	10	10		
	AI Processor	2-core Neural Engine	8-core Neural Engine	NPU	Dual NPU		
AI Accelerator	Performance	600 billion operations per second	5 trillion operations per second	2005 pictures per minute	4500 pictures per minute		
	Ram Interface	LPDDR4X	LPDDR4X	LPDDR4x	LPDDR4X		
Memory	Ram Frequency	N/A	N/A	1833	2133		
	Max Bandwidth	N/A	N/A	29.9	34.1		
Edge and IoT AI-Chips

~Processing Real-Time Data~

Edge Computing: Edge AI Chip

• The need for no latency, higher security, faster computing, and less dependence on connectivity will drive the adoption of devices that

On-device approach helps reduce latency for critical applications, lower dependence on the cloud, and better manage the massive data being generated by the IoT device.

Illustration of an Edge Computing Architecture

Examples of Edge AI Applications

Source: CBINSIGHTS 2018

Examples of Edge AI Applications

Combining a 4K sensor with HDR and Intelligent Imaging Uses on-device vision processing to watch for motion, distinguish family members, and send alerts only if someone is not recognized or doesn't fit pre-defined parameters.

https://nest.com/cameras/nest-cam-iq-indoor/overview/

Apple, Intel, and Google Edge Al-Chips

- <u>Apple</u> released its A11 chip with a "neural engine" for iPhone 8 and X. Apple claims it can perform machine learning tasks at up to 600B operations per second.
 - It powers new iPhone features like FaceID, which scans a user's face with an invisible spray of light, without uploading or storing any user data (or their face) in the cloud.
- <u>Intel</u> released an on-device vision processing chip called Myriad X (initially developed by Movidius, which Intel acquired in 2016).
 - Myriad X promises to take on-device deep learning beyond smartphones to devices like baby monitors and drones
- <u>**Google</u>** proposed a similar concept with its "federated learning" approach, where some of the machine learning "training" can happen on your device. It's testing out the feature in **Google keyboard**.</u>
- Al on the edge reduces latency. But unlike the cloud, edge has storage and processing constraints.

Healthcare AI-Chips

Healthcare Al-Chips

SpiNNaker CPU

Applications/Research Areas

- Neuroscience: neuroinformatics; brain simulation
- Medicine: medical informatics; early diagnosis; personalized treatment
- Future computing: interactive supercomputing; neuromorphic computing

SpiNNaker-1 machine

Many-core system 0.5 (1.0) Million ARM cores Real-time simulator

BrainScaleS-1 machine

Physical model system 4M neurons, 1B plastic syn. Accelerated emulator

SpiNNaker-2 prototype

144 Cortex M4F per chip 36 GIPS/Watt per chip x10 with constant power

BrainScaleS-2 prototype

On-chip plasticity processor Flexible hybrid plasticity Active dendritic spatial structure

https://www.humanbrainproject.eu/en/

Healthcare Al-Chips

SpiNNaker-1 machine

Many-core system 0.5 (1.0) Million ARM cores Real-time simulator

BrainScaleS-1 machine

Physical model system 4M neurons, 1B plastic syn. Accelerated emulator

SpiNNaker-2 prototype

144 Cortex M4F per chip 36 GIPS/Watt per chip x10 with constant power

BrainScaleS-2 prototype

On-chip plasticity processor Flexible hybrid plasticity Active dendritic spatial structure

https://www.humanbrainproject.eu/en/

Healthcare Al-Chips

The Human Brain Project

An EU ICT Flagship project (€1B budget) 80 partner institutes, led by Henry Markram, EPFL

The basic idea of the Human Brain Project From Science to Infrastructures to Science and Innovation

https://www.humanbrainproject.eu/en/

..our work -Homeostatic Neuromorphic System

*this is not the scope of this talk

Our work - Homeostatic Neuromorphic System

Architecture: Spike Packet Format

$\stackrel{\text{2 bits}}{\longleftrightarrow}$	→ 3 bits	← 9 bits	← 6 bits →	< 8 bits
Туре	[Fault_flag]	XYZs	Timestamp	Neuron ID

- Type: It is the header of the packet indicating this packet is either for configuration or spike: '00': system configuration; '11', spike packet.
- [Fault_Flag]: This is only used for the fault-tolerant multicast routing algorithm
- *XYZ_s*: It is the address of the source neuron tile, used for spike routing.
- Timestamp: In spiking neuron network, the time of the generated spike is used to encode the information.
- Neuron ID: this is the identifier of the pre-synaptic neuron.

Table 5: Power consumption of the KMCR and FTSP-KMCR under the benchmarks.

System	KMCR		FTSP-KMCR	
Oystern	Inv. Pen.	Wis.	Inv. Pen.	Wis.
Area (<i>mm</i> ²)	0.102	0.346	0.108	0.365
Power (mW)	10.13	34.20	10.64	35.92

Table 6: MC-3DR Hardware Complexity Evaluation and Comparison.

System	Topology	Area	Power
System	ropology	(<i>mm</i> ²)	(mW)
EMBRACE router [Carrillo2012], 90nm	2D Mesh	0.056	1.72
HANA tile router [Liu2016], 90nm	2D Mesh	0.156	28.12
H-NoC cluster router [Crrillo2012HNoC], 65nm	Star-Mesh	0.022	1.19
Clos-NoC spine switch [Hojabr2017], 45nm	Custom Clos	0.076	-
Clos-NoC leaf switch [Hojabr2017], 45nm	Custom Clos	0.061	-
MC-3DR router, 45nm (this work)	3D Mesh	0.031	1.66

3DNoC-SNN system architecture high-level view.

Architecture: Spiking Neural Processing Core

5bits synapse register format

Input type [0] Synaptic streng

32bits neuron register format

 Membrane potential [0:7]
 Threshold [8:15]
 Leaky value [16:23]
 Reset value [24:31]

 Figure 12: Spiking
 Neuron Processing Core (SNPC) architecture

Our work - Homeostatic Neuromorphic System

Average spike latency over varying the injection rate

Figure 15: Average packet latency evaluation result

oThe H. Vu,Yuichi Okuyama, Abderazek Ben Abdallah, "Comprehensive Analytic Performance Assessment and K-means based Multicast Routing Algorithms and Architecture for 3D-NoC of Spiking Neurons," ACM Journal on Emerging Technologies in Computing Systems (JETC), Special Issue on Hardware and Algorithms for Learning On-a-chip for Energy-Constrained On-Chip Machine Learning, Vol. 15, No. 4, Article 34, October 2019. doi: 10.1145/3340963

oThe H. Vu, Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah, "Fault-tolerant Spike Routing Algorithm and Architecture for Three Dimension NoC-Based Neuromorphic Systems", *IEEE Access, vol. 7, pp. 90436-90452, 2019.*

Agenda

- Fundamental Trends
- AI The 4th Industrial Revolution
- Survey of Al Hardware

Cloud AI Hardware, Chips

- ➢ Mobile AI Chips
- Edge and IoT AI Chips
- Healthcare AI Chips

Conclusions

Conclusions

- DNNs are a key component in the AI revolution.
- Efficient processing of DNNs is an important area of research with many promising opportunities for innovation at various levels of hardware design, including algorithm co-design
- It's important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, speed, energy, and cost

Conclusions

Memory access in AI-Chip is the bottleneck

Worst case: ALL memory R/W are DRAM accesses
 Ex. AlexNet [NIPS 2012] has 724M MACs → 2896M DRAM accesses required

<u>Possible HW/SW techniques to cope with the</u> <u>memory access problem:</u>

*Advanced Storage Technology

- Embedded DRAM (eDRAM) \rightarrow Increase on-chip storage capacity
- 3D Stacked DRAM \rightarrow Increase memory bandwidth
- Use memristors as programmable weights (resistance)

*****Reduce size of operands for storage/compute

- Floating point \rightarrow Fixed point
- Bit-width reduction

*****Reduce number of operations for storage/compute

• Network Pruning; Compact Network Architectures

References

- 1. Dally, W. February 9, 2016. High Performance Hardware for Machine Learning, Cadence ENN Summit
- 2. Michael Alba, The Great Debate of Al Architecture, April 2018 [www.engineering.com].
- 3. [Ros15a] Ross, J., Jouppi, N., Phelps, A., Young, C., Norrie, T., Thorson, G., Luu, D., 2015. Neural Network Processor, Patent Application No. 62/164,931.
- 4. Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, Huazhong Yang, Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, ACM International Symposium on FPGA, 2016
- 5. Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks
- 6. https://itcafe.hu/dl/cnt/2017-12/142233/idc white paper.pdf
- 7. Top AT Trends to watch in 2018, CBINSIGHTS, 2018
- 8. What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial for Beginners | Simplilearn https://www.youtube.com/watch?v=E8n_k6HNAgs
- 9. TensorFlow in 5 Minutes (tutorial) <u>https://www.youtube.com/watch?v=2FmcHiLCwTU</u>
- 10. Hardware Architectures for Deep Neural Networks, ISCA Tutorial June 24, 2017, http://eyeriss.mit.edu/tutorial.html
- 11. Quantifying the performance of the TPU, our first machine learning chip: <u>https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html</u>
- 12. https://streamable.com/
- 13. Abderazek Ben Abdallah, "Neuro-inspired Computing Systems & Applications", Keynote Speech, 2018 International Conference on Intelligent Autonomous Systems (ICoIAS'2018), March 1-3, 2018, Singapore.[slides.pdf]
- 14. The H. Vu, Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "<u>Efficient Optimization and Hardware Acceleration</u> of <u>CNNs</u> towards the Design of a Scalable Neuro-inspired Architecture in Hardware", Proc. of the IEEE International Conference on Big Data and Smart Computing (BigComp-2018), pp. 326-332, January 15-18, 2018, Shanghai, China. [paper.pdf].[slides.pdf]
- 15. Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "Animal Recognition and Identification with Deep Convolutional Neural Networks for Farm Monitoring", Information Processing Society Tohoku Branch Conference, Feb. 10, 2018 [slides.pdf]
- 16. Yuji Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "SRAM Based Neural Network System for Traffic-Light Recognition in Autonomous Vehicles", Information Processing Society Tohoku Branch Conference, Feb. 10, 2018. [slides.pdf]
- Kanta Suzuki, Yuichi Okuyama, Abderazek Ben Abdallah, "Hardware Design of a Leaky Integrate and Fire Neuron Core Towards the Design of a Low-power Neuro-inspired Spike-based Multicore SoC", Information Processing Society Tohoku Branch Conference, Feb. 10, 2018. [slides.pdf]
- 18. Spiking Neuron Models Single Neurons, Populations, Plasticity Wulfram Gerstner and Werner M. Kistler Cambridge University Press, 2002