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Al Hardware is ... everywhere

Self-driving Car
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Al Hardware is

everywhere

Self-driving Car

3D LIDAR

Generates a vehicle’s local

Environment Condition in 3D. M
Stereo vision camera The radius is around 100m. Tracking the location of the
1) Provides distance information vehicle by radio signals from
2) Provides image lnformaﬂon | satellites.

MU
Estimating the self-position by
accelerometer, gyro, the magnetic

Steer-By-Wire - " In-wheel motors
i o , \ 7 0.29(kw)x2
~Front LIDA 15 A Shaft encoder
N @ Ba Provides input for the

odometry component
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Al Hardware is ... everywhere

Brain implant allows paralysed monkey to walk

There really is a kind of intelligence inside the spinal cord. We are not just
talking about reflexes that automatically activate muscles. In the spinal cord
there are networks of neurons able to take their own decisions

-Grégoire Courtine-
Neuroscientist, Federal Institute of Technology, Lausanne

PARALYSED PRIMATES WALK

A wireless implant bypasses spinal-cord injuries in monkeys,
enabling them to move their legs.

Wireless information
transfer

N
Implant IMPLANTABLE
Electrodesf . 4 } » PULSE GENERATOR
R ———Brain 4
"

I
Spinal cord

Neuronal : :
impulse

A % SPINAL IMPLANT
-y
" [

' —Muscle

Nature volumes39, pages284—288 (10 November 2016)



Al Revenue &
GDP Growth Rate in 2035 comparing Baseline Growth to Al scenario

Artificial Intelligence Revenue, World Markets: 2016-2025
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Annual growth rates in 2035 of gross value added (a close approximation of GDP), comparing baseline growth in 2035 to an - Basalia
artificial intelligence scenario where Al has been absorbed into the economy
Source: Accenture and Frontier Economics - Al steady rate

Source: https://semiengineering.com/what-does-an-ai-chip-look-like/
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Al Revenue &
GDP Growth Rate in 2035 comparing Baseline Growth to Al scenario

Artificial Intelligence Revenue, World Markets: 2016-2025
$40,000

$35,000
$30,000
$25,000

$20,000

($ Millions)

$15,000

$10,000

Governments are competing to
establish advanced Al research,

seeing Al as a way for greater
economic power and influence.

Source: CBINSPIGHTS 2018
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Performance (vs. VAX-11/780)

Moore’s law is no longer providing more Compute

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0
HMVQ'N::A%WB&IG:”

Intel Xeon 6 3.3 GHz (boost 1o 3.6 9,935
mm4w~3&?&hmbuw“ 49.870
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) 31,900 419
Intel Core Duo Extreme 2 cores, 3.0 GHz 21,87
Intel Core 2 Extreme 2 cores, 2.9 GHz —o—9

e

o e

100,000
10,000
Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)
IBM Powerd, 1,3 GHz
Intel VC820 motherboard, 1.0 GHz Pentium il processor g
1m Ligital AlphaServer 8400 6/575, 575 M 1 /
AlphaServer 4000 5/600, 600 MHz 21164 _gf ="
100
10
AX-11/780, 5 MHz
-
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Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-5¢



Moore’s law is no longer providing more compute

End of the Line = 2X/20 years (3%/yr). ¢
Amdahl's Law —"2X/6Vears(129%]/year
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

¢ CISC 2X/2.5 years T RISC 2X/1.5years
(22%/year) (52%/year)
100,000
e
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**PDennard scaling: As transistors get smaller their power density stays constant, so that the power consumption stays in proportion
with area: both voltage and current scale (downward) with length (WP).

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-£9



Moore’s law is no longer providing more compute

End of the Line = 2X/20 years (3%/yr).¢
Amdahl's Law = 2X/6years (12%/year) ¢
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)

Major improvements in cost-
energy-performance must now

come from
domain-specific hardware.

1980 1985 1990 1985 2000 2005 2010 2015

**PDennard scaling: As transistors get smaller their power density stays constant, so that the power consumption stays in proportion
with area: both voltage and current scale (downward) with length (WP).

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-£9



Technology Transformation

Massive amounts of data is generated

A WA Every 60 seconds

L= - 3 98,000+ tweets
o - g n 695,000 status updates
PE * T1million instant messages
:i;blglaet’: ;c'l-’l:le'tloud p 698,445 Google searches
‘ a 168 million+ emails sent
," i n« i 1,820TB of data created

217 new mobile web users

Madthr "
v D =

12

Source: https://practicalanalytics.files.wordpress.com/2012/10/newstyleofit.jpg



DNN Compute Requirements is Steadily Growing

Metrics LeNet-5 AlexNet VGG-16 GooglLeNet ResNet-30
(v1)

Top-5 error n/a 16.4 7.4 6.7 9.3

Input Size 28x28 227X227 224x224 224x224 224x224

# of CONV Lavers 2 5 16 21 (depth) 49

Filter Sizes 5 3,51 3 1,3,5 7 1,3, 7

# of Channels 1,6 3-256 3-512 3-1024 3-2048

# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048

Stride 1 1, 4 1 1,2 1, 2

# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M

# of MACs 283k 666M 15.3G 1.43G 3.86G

# of FC layers 2 3 3 1 1

# of Weights o8k 58.6M 124M 1M 2M

# of MACs 58k 58.6M 124M 1M 2M

Total Weights 60k 61M 138M ™ 25.9M

Total MACs 341k 124M 15.5G 1.43G 3.9G

Source: Joel Emer, ISCA Tutorial, 2017



What does it mean ?

d of Exponential
l\li‘n O, + Increase in — Needs New
ng: . Compute —  Approach

Requirements



Current State of the Art in Neural Algorithms HW Computing

Hardware

\

Domain-specific J

General-purpose J

Programmabl Fixed Latency Throughput
logic logic oriented oriented
FPGA J [ ASIC J CPU GPU
« General; - Specific: executes STDP IS EIEIEL, Celm ol regrEmlg
. . languages
requires HDL « HP & efficiency .
. Lowest power efficiency and
« Moderate Expensive, 40MB local performance
performance & AEUIel7 Sl S5l Memory separate from chip
efficiency TrueNorth

Example: Google deep learning stcdi/



Current State of the Art in Neural Algorithms HW Computing

Current Hardware J
Industry ~
< Focus
Nomain-specific J General-purt;ose
Programmabl Latengy Throughput
logic ori¢nted orlented

‘ CPU ‘ GPU

Most general; common programming

» General;
languages

requires HE -
Lowest power efficiency and

performance
Memory separate from chip
Example: Google deep learning stddy



CPUs, GPUs, FPGAs or ASICs ?

The only tricky part is getting
them to do AI computation
quickly and efficiently.

ASICs
innnna

DNN Processing Units

)

BrainWave Cerebras
Baidu SDA Google TPU
Deephi Tech Graphcore
ESE Groq

Teradeep Intel Nervana

Etc. Movidius
Wave Computing
Etc.

Hardware: Flexibility vs Efficiency

Deployment alternatives for deep neural networks (DNNs) and examples of their implementations. (Image courtesy of Microsoft.)
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Four Main Factors in Promoting AI/Al HW

Strong Gov. & Industry
Engagements

Image:kdnuggets.com

Al algorithms are Industrial
being applied to
nearly
everything

we do.

Revolution

Growth of
computational

B j% Larger data sets and
models lead to better
accuracy but also

increase the More compute means new solutions to
computation time previously intractable problems, i.e. GG




Hardware & Data Enable DNNSs

IMAGE RECOGNITION

16X

Model
152 layers

22.6 GFLOP

~3.5% error
8 layers

1.4 GFLOP
~16% Error

SPEECH RECOGNITION

10X

Training Ops
465 GFLOP

12,000 hrs of Data
~5% Error
80 GFLOP
7,000 hrs of Data

~8% Error

2012 2015
AlexNet ResNet

Microsoft

2014 2015
Deep Speech 1 Deep Speech 2
(1]
R AC
BaichaE

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks



Al HW is inspired by Nature — Biological neuron

jrom pinterest.com

AT Chips and systems are inspired . .:.7.,
by biology = parallel computatlon




Al HW is inspired by Nature — Biological neuron

Al Chips and systems are inspired by
biology = parallel computation.

Latest digital DL processors:
~10TOPS/W

o . 1011

W # Of neurons: ~10 Synapse op. in brain: 0.1~1 fJ/op

% # of synapses: ~10%5 1’000~10’03f~T1%F;Sc;\F/>V5/w
¢ Power consumption: ~ 20 W;

% Operating frequency: 10~100 Hz

¢ Works in parallel: 10° parallelism vs. <10!
for PC (VN)

% Faster than current computers: 1.e.
simulation of a 5 s brain activity takes
~500 s on state-of-the- art supercomputer




...there are many topologies for mimicking the brain functions

Hidden

Input
Output

[Rosenblatt,1958]

1954
oF-Forward (FFNN)

eDeconvolutional *Deep Belief Net (DBN),
Network (DN) SAE

Ex.
I: red flower
O: red flower image

2014

eGenerartive adversarial
net(GAN, GRU, NTM

[Hayes, 2013]
2013

eMarkov Chain (MC),
VAE, ELM

Model
a a a a:

Acowstic /| H HY
JEE sy s oo

Xzl Bn Be By Dy

ol ASOLK } i

[Goociféllow, 2015]

No connections within a layer
Fully Connected Input and Hidden Units
Stochastic Units Stochastic Units

A Boltzmann Machine A Restricted Boltzmann Machine

Hinton,1986]
1986

*Boltzmann, Restricted
Boltzmann (RBM)

eEcho State Network
(ESN)

[Jaeger, 2004]

2015

eDeep Residual Net
(DRN), DCIGN,

[He, 2015]

gaussian
RBF units ()

Izt [

[Broomhead,1988]

eRadial Bas. Func,
Autoencoder (AE)

eConv. Neural Network
(CNN)

[CeCum, 1998]

2015

eDeep Convol. Inverse
graphics Net (DCIGN)

ameslizien + Tocling

(1) it
Hidd:n
x(1) hit-1)

[Elman,1990]
1990
eRecurrent Neural (RNN)

[Hochreiter,1997]

1997
eLong/Short Term

Mem (LSTM™), BiRNN

} Lol b gt <
Lamisunzn

)

i H HFEWM
ﬁ“ )
\ Y S
1

s

Dt
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Different approaches to Al Chips
Poor/Simple Good/Complex

—

Izhikevich  Huxley-Hodgkin

Neuron Digital, Analog. LIF. model model
MAC . Many
. Spikin .
Synapse (weighted . pISITg[l)P nonlinear
. sum) properties

Generally Used in DL algorithms

Frequency 10~100 Hz (brain)




Current Al Chip = Accelerator/Co-processor

Program Code

ﬁ

Rest of Sequential
CPU Code

|
I
I
[F——)
—
Compute-Intensive | | By
I
I
I
I
I
I

G PU Functions CPU
i Use GPU to
Parallelize
| ﬁ
\ 4
_ ~ J

Acceleration with GPU



Accelerator Characteristics

CPU GPU
FiFo
Memory
subsystem
T™XLT | TXLT
L11 L1D{L1I
implicitly managed mixed explicitly managed
EENEEEEE EEEE “-ll 3 EENEEEES BEEE
Compute EEEEEEEE W = T
primitives  semcEees SEEE  QIEEAN mEEs
HEEEEEEEE EEEE II-II [ | [ [ [ |
EEEEEEEE EEEE [ | [ [ ][ |
scalar vector
Data (I M I

type fp32 fplé ints

[Ref 3]



...Deep Leering is considered as a
sophisticated “rocket’’ of Machine Learning!!

g \ 4 7 TRAINING

== INPUT FIRST LAYER HIGHER LAYER TOP LAYER OUTPUT
e Ouring the training phase, a An unlabeled The neurons respond Neurons res pond Neurons respond The network
' neural network is fed thousands image is shown to to different simple to more complex ta highly predicts what

A of labeled images of various the pretrained shapes, like edges. structures. complex, abstract the object
V animals, learning to classifythem.  networ k. concepts that we most likely is,

1. “Deep Learning” means using a neural network
with several layers of nodes between input & output

2. the series of layers between input & output do
feature identification and processing in a series of
stages, just as our brains seem to.



Examplel: Character Recognition on FPGA

—
— -
i

Character Recognition with BP training

RAM

Impleme-ﬁ:cation of detecting 16
patterns from 16 inputs with BP.

Family: Cyclone2

" Device: EP2C35F672C6

Synthesis: Quartus2 13.1

Table 1 : ANN Performance Evaluation
ALUs Registers Pins Fmax
10,989 (33%) | 5,814 (18%) 432 (89%) 76.02 MHz
Memory DSP Block Power Consumption
54 (77%) 286.84 mW

‘O’ letter




Example2: Handwriting Digit Recognition on FPGA

Input Output

IS 1

‘ The image

oEEREE s “2”

SO

16 x 16 = 256
Ink — 1
No ink — 0

Each dimension

represents the confidence
of a digit.




ExamEIe of Neural Network




Example of Neural Network

0.12




Example of Neural Network

£1R? - R? F(CD =102 (o) = [0:05

Different parameters define different function



Matrix Operation

i O F O P
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Neural Network
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Neural Network

W N A
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1
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a
1

 —W
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g Qy
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Parallel computing techniques are
needed to speed up matrix operations
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b
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DL is Computationally Expensive

» The two phases of NN are called training (or learning) and
inference (or prediction), and they refer to development
versus production.

» The Developer chooses the number of layers and the type of
NN, and training determines the weights.

 Virtually all training today is in floating point.

« A step called guantization transforms floating-point
numbers into narrow integers—often just 8 bits—which are
usually good enough for inference.

 8-bit integer multiplies can be 6X less energy and 6X less
area than IEEE 754 16-bit FPMs, and the advantage for
integer addition is 13X in energy and 38X in area [Dal16].



A more biological version: LIF/SRM Model

Spike Response Model
spike emission )
)

Spike reception: EPSP
A1)

Spike emission: AP

ale-1))

" (r) _ ?7(/ <)>Z Z W, g(z zf)

Hi(t)—lgj ang. Z; =1




A more biological Model: Molecular Basis

potential’,

|_|

|
| ms

°c e - axon —.’ /

+ oe '
K © ° ‘ ] /electrode
' L e -
lons/proteins




Electronic devise vs chemical device

Mechanically gated channel closed Mechanically gated channel open

n substrate

* Deliver the concentration difference of K+,Na+

 Action potential ~ 70 mV
» Extreme low voltage operation
» Noise problem
» Multiple signal input/ integration

e Spatial and temporal multiplexing = Active sharing of
the interconnect

e Chemical computing, extremely low operation voltage
(<100mV) =» Low power



Hodgkin-Huxley Model

OutsidethecellJ ‘
lonpump ) iside

lon channels

Action potential
Na® ions in

oy
.0
o~
©
N
(2 IS
NG
o

&
Q

' K* ions out

o

Threshold / Failed
initiations
Resting state

Jﬁ :('IE (Im _IE
- e Stimulus
@
Hyperpolarization
4

3
)

1 2
Time (ms)

Ju=Jd+J I +J;
J+G, (1,1

. ol . -
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Hodgkin-Huxley Model

Outside the ceIIJ ‘

. JK | Gy !“J‘F“ N\ |
B Vk J_; Viis L
T ?

Inside the cell

i = O (I m ¥ i )
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M M M "
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Action Potential (Synapse) Storage

(Dr. Leon Chua, 1971)

g T "

/ \,

The electrical |"" 1%\

resistor 1s not
. Memristor

constant but / ae .

depends on the

history of

current that had

previously

flowed through < o
the device. . \ potential

\h

“*Voltage pulses can be applied to a memristor to change its
resistance, just as spikes can be applied to a synapse to
change its weight.



Wiring via AER — address Event Representation

4 3 N
'Y r < Address Event Bus o s T T i
3 212
Inputs
Outputs
Source Destination
Chip Chip
Address-Event
representation of

/ action potential

Action Potential



Spike-timing-dependent plasticity (STDP)

g
L O
= -80
= LTP
o
E O _
Q oo O
E g O O -
T ] - i
=40 -20 0 0 ¥
g "
= O
ms
Atpre-post( )

 Adjusts the strength of connections between

neurons in the brain.

v Adjusts the connection strengths based on the relative
timing of a particular neuron's output and input action
potentials.



Agenda
1

 Fundamental Trends
« Al—-The 4% Industrial Revolution
» Cloud Al Hardware, Chips
» Mobile Al Chips
» Edge and loT Al Chips
» Healthcare Al Chips

e Conclusions



Bi

NVIDIA

computing archite

Al infere

IBM and the US AFRL
announce a collaboration on
a brain-inspired
supercomputing system

HUAWEI

Huawei introd s Kirin 970, its
new fla ip SoC with Al
capabilities

AMAZON

Ng a new
processor for its virtual
int Echo to make Alexa

faster and smarter

Corps Al Chips

[source:

GOOGLE

gle intre

nsor Proce

TensorFlow framework in
machine learning

MICROSOFT

t announces that it is
working on a processor for
th cond generation of
Holo
enhance the AR headset's
image recognition feature

INTEL

Intel announces the ac
of Movidius
its existing ¢

ology in th
of new Al chips for devices
such as drones, robots, VR and
elc




he are two Al ChiE Models: ANN and SNN

* The output of ANN Chip depends only on the current stimuli, the
output of SNN depends on previous stimuli also

e The SNN/Neuromorphic Chip operates on biology-inspired
principles to improve performance and increase energy efficiency

Izhikevich  Huxley-Hodgkin

Neuron Digital, Analog. LIF. model model
MAC e Many
. Spikin .
Synapse (weighted . P ST?DP nonlinear
. sum) properties

Generally Used in DL algorithms

Frequency 10~100 Hz (brain)



Training & Inference

TRAINING

Learning a new capability
from existing data

A

!

Untrained Deep Learning TRAINING
Neural Network Framework DATASET
Model

FPGA, GPU, Cloud

INFERENCE

Applying this capability
to new data

Trained Model App or Service
New Capability Featuring Capability

Trained Model
Optimized for
Performance

CPU, FPGA, GPU, ASIC




Neuromorghic/SNN AI-ChiEs

Neuromorphic Sensors -
electronic models of retinas and
cochleas.

Smart sensors — tracking chips,

motion, pressor, auditory classifications
and localization sensors.

Models of specific systems: e.g.
lamprey spinal cord for swimming, | 4
electric fish lateral line. Neurogrid TrueNorth

Pattern generators — for locomotion (Stanford) (IBM)
or rhythmic behavior e A
Large-scale multi-core/chip

systems — for investigating models of
neuronal computation and synaptic
plasticity.

-

Brainscales/HBP SpiNNaker
(Heidelberg, Lausanne)  (Manchester)




Example

Loihi Al-Chip - a 60-mm2 chip fabricated in Intel’s 14-nm

Technology: 14nm

Parallel 1O

Die Area; 64 mm?2

JH

Core area: 0.41 rnm?2

NmC cores: 128 cores

%86 cores: 3 LMT cores

JFE [EE

Max # neurons: 128K neurons

Max # synapses: 128M synapses

JE [

Transistors: 2.07 billion

JoE
[EE
=N

-

Parallel IO
JH] [

o

o |
JE| [

JE [

Low-overhead NoC fabric
* 8x16-core 2D mesh

*» Scalable to 1000’s cores
* Dimension order routed
+ Two physical fabrics

+ 8 GB/fs per hop

=
A

]

(]

&

28] [

[l =

8] [

R

= [

-

-

Parallel 1C

M. Davieset al., “Loihi: A Neuromorphic Manycore Processor with On-Chip Learning,” IEEE Micro, vol. 38, no.

Parallel IO

Neuromorphic core

LIF neuron model
Programmable learning
128 KB synaptic memory
Up to 1,024 neurons
Asynchronous design

——

Parallel off-chip interfaces

Two-phase asynchronous
Single-ended signaling
100-200 MB/s BW

Embedded x86 processors

Efficient spike-based
communication with
neuromorphic cores
Data encoding/decoding
Network configuration
Synchronous design

1, pp. 82-99, January/February 2018




Cloud AI-Chips

ol



Acceleration enterprise Al with DL Cloud

BR Microsoft Azure

<

NVIDIA.

D

Google Cloud Platform

IBM Cloud

/

amazon
web services™



Custom ASIC: Tensor Processing Unit (TPU)

TPU is deployed in datacenters since 2015 that accelerates the
inference phase of neural networks (NNs).

sco T
wlomm WEoEp
ES
Local Unified Buffer for Matrix Multiply Unit L])_w =/
Activations (256x256x8b=64K MAC) > iﬂ“ """" e
(96Kx256x8b = 24 MiB) 24% —@
29% of chip Bfifetic g @
D Host Accumulators g W '
e Interf. 2% (4Kx256x32b =4 MiB) 6% | e e
M T _a M =
port - Activation Pipeline 6% | port L%
ddr3 - © | ddr3 W
3% |, 4 . rCle B e 3%
‘ 5 | Interface 3% | i | Misc. IO 1% | | : ® @ o
Floor Plan of TPU di . S
oor Hian o 1€ TPU Printed Circuit Board  Source: TensorFlow.org

PClv3 x 32

Host Server

Source: In-datacenter Performance Analysis of a Tensor Processing Unit Jouppi et al, ISCA, 6/2017




Custom ASIC: Tensor Processing Unit (TPU)

TPU is deployed in datacenters since 2015 that accelerates the
inference phase of neural networks (NNs).

sl L e e
u

Google’s first Tensor
Processing Unit (TPU) on a
printed circuit board (left);
TPUs deployed in a Google
datacenter (right)

Source:

« The TPU board can perform 92 TeraOps/s (TOPS). It is 15 to 30 times
faster than CPUs and GPUs tasked with the same work, with a 30- to
80-fold improvement in TOPS/W.

« The software used for comparison of systems was the TensorFlow
framework.

Experience Cloud TPU: https://github.com/tensorflow/tpu
https://cloud.google.com/tpu/docs

Source: In-datacenter Fertormance Analysis Ot a [ensor Frocessing unit Jouppi et al, ISCA, b/Z01/



Custom ASIC: Tensor Processing Unit (TPU)

= DD — The main computation part is the
30GB/s

T - P Matrix Multiply unit (MMU).
Weight
PCle FlFO/FetcherJ Data pipeline o
> | Gen3x16 30GB/s .//Illlllllllllll
= 14 GB/s o pes EEEEEEEREEEEEEEN
~ ‘ gesces EENEECEDEEEEREER
g g ===lllllllll====
8 = ==-mﬂlu==§
£ - - Multiplier Systolic -~ =
s llllll!l“llllllg
= EE[EEEE EEEEEm:
e T
“CISC” Instructions Sequencing : EREEEEEEEEEEEEERE
? Average latency: 10 cycles Norm & Pool ; EREEEEEEEEEEEEER
. CEEEHE T
TPU Block Diagram Figure source: semiengineering.com
Canned Estimators | EEuRAt .  The portion of the application run on the
- Train and evaluate TPU is typically written in TensorFlow
eras <4 models . . .
Model and is compiled into an API that can run
o «—— Build models on GPUs or TPUs.
- v The TPU has a CISC-like instructions set:
v" Read_Host

TensorFlow Distributed Execution Engine v Read._Weig.hts
v' MatrixMultiply/Convolve

v’ Activate
v" Write_Host

TensorFlow Platform Layers



TPU Is based on the Systolic Array ldea

Yout Yir

r g

: - : g L] o SO
The matrix unit uses systolic Contol — "
execution to save energy by
reducing reads and writes of
the Unified Buffer. e o () - inputs

: Maximizes computation done on a

single piece of data element brought from

Interf. 2% Kx256x32b =4 MiB) 6% — f— T e
M : ——— Y] D e— — — —_—
port Control 2% ’ Activation Pipeline 6% \ dpg,; | | I
I,

3%

Y | [ Pcie -
= Interface 3% i | Misc. /0 1%

Systolic data flow of the Matrix Multiply Unit.
SW has the illusion that each 256B input is read

TPU is based on the Systolic Array at once, and they instantly update one location of

each of 256 accumulator RAMs.
H
AT MOST

\
/
MEMORY 30 MOPS B vt
EBE %ﬁi‘ﬁ i j * Left Ventricle

) | + Aortic Valve PEs: cells

e * Aorta

INSTEAD OF: * Right Atrium
* Tricuspid Valve
+ Right Ventricle

« Pulmonic Valve Similar to blood flow: heart -> many cells -> heart

* Pulmonary Arteries

+ Pulmonic Veins Memory: heart

+ Left Atrium

- Mitral Valve Data: blood

=p 1

=

THE SYSTOLIC ARRAY

Figure 1. Basic principle of a systolic system.

H.T. Kung, "Why systolic architectures?” IEEE Computer 1982) Source: In-datacenter Performance Analysis of a Tensor Processing Unit Jouppi et al, ISCA, 6/2017



Systolic arrays for DNN acceleration (Ex. TPU)

Input matrix Weight matrix
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NN Training Works with Low-precision FP
fp32: Slngle precision IEEE Floating Point Format

Exponent: 8 Mantissa (Significand): 23 bits

Range: (10™-45) to (10"38)

fp16: Half-precision IEEE Floating Point Format

Exponent: 5 bits Mantissa (Significand): 10 bits

e e e VN Range: 10%-8to 65504

bfloatl6: Brain Floating Point Format

Range: (10"-45) to (10"38)




NN Training Works with Low-precision FP

* One technique exploited by the new chips is using low-
precision, often fixed-point data, eight bits or even
fewer, especially for inference.

* One of the major open questions in all of this as far as
hardware accelerators are concerned is how far can
you actually push this down without losing
classification accuracy?

* Results from Google, Intel, and others show that
such low-precision computations can be very powerful
when the data is prepared correctly, which also opens
opportunities for novel electronics.



What are the differences between the three TPUs

TPU v1 Case Study: ResNet-50 and TF 1.11
(2015)

Real data: ~41 00 images/sec
Cloud TPU Final accuracy: 93%
(v2,2017) e

raining time:
(90 epogchs) 7h 47m
excluding startup overhead

C ini <
——
(v3,2018) training cost: $1 1

Alpha

FLOPS -> OPS (Fixed-point operations per sec.)

e.g. PC(Core 17) ~500GFLOPS

Operation performance: TOPS/GOPS (Tera/Giga Operations Per Second)
Energy efficiency: TOPS/W (Tera Ops. per sec. / Joule per sec = Tera ops. / Joule )
Energy consumption per op. (1/(TOPS/W) [pJ/op] =1 [pJ/op])

Synapse op. in brain: 0.1~1 fJ/op
(1f7=10"15 joules)

1,000~10,000 TOPS/W
=1~10 POPS/W




What are the differences between the three TPUs

ResNet-50 on Cloud TPU v2 Pod

= Real data: 2 1 9 J 0 0 0+ images/sec
Final accuracy: 93%

Training time:

Lflz;" s ,:(" u...r:-j' 'm. :;,‘ Y ;“;.';‘.ie;;l-.‘_'} (90 epochs) 8 m 4 5 S

excluding startup overhead

TPU v3 Pod (2018)

https://cloud.google.com/tpu/



PU Performance on three Pogular NNsS

e Multi-Layer Perceptrons (MLP)
* Convolutional Neural Networks (CNN)
« Recurrent Neural Networks (RNN)

Layers Nonlinear _ TPU Ops/ [TPU Batch| % of Depioyed
Name | LOC FC | Conv |Vector| Pool |Total | function Weights Weight Byte Size TPUs in July 2016
MLPO | 100 5 5 RelL.U 20M 200 200 61%
0
MLP1 [1000] 4 4 RelL.U 5M 168 168
LSTMO [1000 | 24 34 58 | sigmoid, tanh [ 52M 64 64 994
LSTM1 |1500| 37 19 56 | s=igmoid, tanh | 34M 96 96 °
CNNO | 1000 16 16 ReLU SM 2888 8 50
[}
CNN1 |1000] 4 72 13 | 89 ReLU 100M 1750 32
Tensor Processing Unit (TPU) with MLP, CNN, RNN)
Die Benchmarked Servers
Model o Vv |zl TP Measured | TOPS/s B/ On-Chip ies DRAM Size TOP Measured
Idle | Busy | 8b | FP Memory Idle | Busy
Haswell 662 |22 |2300[145W[41W([145W| 2.6 |1.3| 51 | 51 MiB | 2 256 GiB 504W [159WHS5W
E5-2699 v3
NVIDIA K80 . 256 GiB (host)
(2 dies/card) 561 |28 | 560 [150W] 25W| 98W | -- |2.8| 160 [ 8MiB | 8 412 GiB x 8 1838W [357W[991W
TPU NA®*|28 | 700 | 75W [28W[40W | 92 [ - | 34 | 28MiB | 4 25_;58(}(;]?]5;(};0?) 861W [290W[384W

Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. Haswell has 18 cores, and the
K80 has 13 SMX processors.

Source: In-datacenter Performance Analysis of a Tensor Processing Unit, Jouppi et al, ISCA, 6/2017



TPU Relative Performance/Watt

Relative Performance/Watt
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Quantifying the performance of the TPU, our first machine learning chip:
https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html




NVIDIA’s Volta GPU is Specially Designed for Al

« NVIDIA’s Volta GPU is specially designed for ML, and it
offers 100 TFLOPS of DL performance, according to the
company.

» GPUs were built for graphics workloads and evolved for
high performance computing and Al workloads

« While GPUs are used extensively for training, they’re not
really needed for inference

W™

N = G
« \ P S
- - SO 2 5

NVIDIA’s Volta GPU architecture is specially designed for Al. (Image courtesy of NVIDIA.)



The HGX-2, announced at NVIDIA GTC May 2018

Multi-precision computing platform for scientific computing
(high precision) and Al workloads (low precision).

NVIDIA® Tesla® V100 GPUs
0.5TB Memory

12

NVIDIA NVSwitches
Direct GPU-to-GPU Connection
Between All 16 GPUs

24X 0.5TB 2 PFLOPS

Higher GPU-to-GPU Aggregate High-Bandwidth Total Compute
Bandwidth’ GPU Memory




NVIDIA’s GPU Performance

Tesla V100

2X CPU

0 10 20 30
Source: NVIDIA Performance Normalised to CPU

o4



At Facebook, for example, primary use case of GPUs is offline

training rather than serving real-time data to users

Offline training uses a mix of GPUs and CPUs

Service Resource Training Frequency  Training Duratior
News Feed Dual-Socket CPUs Daily Many Hours
Facer GPUs + Single-Socket CPUs | Every N Photos Few Seconds
Lumos GPUs Multi-Monthly Many Hours
Search Vertical Dependent Hourly Few Hours
Language Translation | GPUs Weekly Days
Sigma Dual-Socket CPUs Sub-Daily Few Hours
Speech Recognition GPUs Weekly Many Hours
TABLE II

FREQUENCY, DURATION, AND RESOURCES USED BY OFFLINE TRAINING FOR VARIOUS WORKLOA]
However, online training is CPU-heavy

Services Relative Capacity | Compute Memory
News Feed 100X Dual-Socket CPU High
Facer 10X Single-Socket CPU | Low
Lumos 10X Single-Socket CPU | Low
Search 10X Dual-Socket CPU High
Language Translation 1X Dual-Socket CPU High
Sigma 1X Dual-Socket CPU High
Speech Recognition 1X Dual-Socket CPU High
TABLE 111

facebook
research RESOURCE REQUIREMENTS OF ONLINE INFERENCE WORKLOADS.



GPUs & ASICs Renting Cost Per Hour

Exhibit 11: Offerings for Al command significantly higher prices
Google Compute Engine price/hour/single compute instance (i.e. per 1CPU, GPU, TPU, etc)
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2
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=
e 3.3x
3
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8 6.1x
(&) S
$1.00 i
$0.01 $0.03 $0.05 $0.06 $0.08
$0.00 —— —_— { - __ .
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Source: Google, Goldman Sachs Global Investment Research.



Mobile AI-Chips



Mobile AI-Chips

unstructured.

hardware.

*  Much of the data captured by the smartphone, including images, video, and sound, is

« Training and Inference are Two Vital Components of AT on Smartphones.

« Unlike structured data — information with a degree of organization — unstructured
data makes compilation a time- and energy-consuming task.

« Huawei’s Kirin 970 chipset comes with its own neural processing unit (NPU).

» Huawei has it own APIs that developers need to use to tap the power of the “neural”

* Google has it mobile AI framework - TensorFlow Lite.

On-Device Al Cloud Al
Security e
Power
4 o
EfﬁCIenCy ‘E z :‘“-]‘“g Natural Language Processing
73 g?;é’o Image Recognition
Low ;f e ouls Attt Applesiri  Speech Recognition
Latency 4 Amazon Alexa  Microsoft Cortana
Connectivity o L .
Independent eepLeamning

Machine Learning

Source: IDC, Huawei, Qualcomm, 2017

Inference

earnil data Applying model to new data
Artificial Intelligence
Frameworks in the Cloud Dewi
Unstructured data [ IAAEEEINEEENEIRIN IR B S . | | e
captures
ne la
I v
Y .

Source: IDC, Huawei, Qualcomm, Nvidia, 2017

Huawei Kirin 970

Source: Huawei, 2017

8-Core CPU

up to 2.4GHz

12-Core GPU
Mali GT2MP12

Kirin NPU

1.92T FP16 OP5

Hi-Silicon Al

Image DSP
512bit SIMD

Global-Maode Modem

1.2Gbps@LTE Catl8

Dual Camera ISP
with face & motion detection

4K Video HiFi Audio
HDR10 32hit / 384k

LPDDR 4X UFS 2.1

i7 Sensor Processor

Security Engine
inSE & TEE




Summary of Mobile Al Chi|:_)s

System-on-chip (SoC)
Supplier
Released date
64 Bit
manufacturing process

Design

Transistors
CPU Cores

Performance CPU
CPU

Efficiency CPU
Max Clock (GHz)
GPU
GPU Cores

Al Processor

GPU

Al Accelerator
Performance

Ram Interface
Ram Fregquency
Max Bandwidth

Memory

Al1l Bionic Al2 Bionic
Apple
9.12.2018
10 nm T5MC nm TsMC
4.3 billion 6.9 billion
244 244
MNew CPU= 2 + 15%
DR performance
. New CPU= 4 + 50%
Mistral = & efficiency
2.4 N/A
Internally-designed GPU Internally-designed GPU
3 o

2-core Neural Engine

600 billion operations per
second

LPDDR&X
MN{A
MN/A

8-core Meural Engine
5 trillion operations per

second
LPDDR&X
NJA
M

Source:

Kirin 970 Kirin280
Hisillicon
8.31.2018
Yes
10nm T5MC Tnm T5MC
5.5 billion 6.9 billion
Gaty Fadady

Cortex-A73 = 2

Cortex-A53 = &

2.4
Mali-G72 MP12
12
NPU

2005 pictures per minute

LPDDR4x
1833
299

Cortex-AT6 (2.6GHz) = 2 +
Cortex-AT6 (1.92GHz) = 2

Cortex-A55 = 4

2.6
Mali-G76
10
Dual NPU

4500 pictures per minute

LPDDR&X
2133
341



Summary of Mobile Al Chi|:_)s

Design

CPU

GPU

Al Accelerator

System-on-chip (SoC)
Supplier
Released date
64 Bit
manufacturing process
Transistors
CPU Cores

Performance CPU

Efficiency CPU

Max Clock (GHz)
GPU

Al Processor

Performance

All Bionic Al2 Bionic Kirin 970 Kirin280
Apple Hisillicon
9.12.2018 8.31.2018
Yes
10 nm TSMC Tnm TSMC 10nm TSMC I Fnm TSMC
4.3 billion 6.9 billion 5.5 billien 6.9 billion
2+4 2444 Galy 2424ty
NS oz AT
Mistral « 4 i EEHL.J:;E?.-:}SO% Cortex-AS3 x 4 Cortex-AS5 x 4
2.4 NSA 2.4 2.6
Internally-designed GPU Internally-designed GPU Mali-G72 MP12 Mali-G76

2-core Neural Engine

600 billion operations per
second

Dual NPU

4500 pictures per minute

Memory

Ram Interface
Ram Frequency
Max Bandwidth

LPDDR&X
MNIA
MN/A

8-core Meural Engine NPU
3 trillionszgsrnac}ions per 2005 pictures per minute
LPDDR&X LPDDR4x
NSA 1833
M 299

Source:

LPDDR&X
2133
341



Edge and IoT AI-Chips

~Processing Real-Time Data~



Edge Comguting: Edge Al ChiE

« The need for no latency, higher security, faster computing, and less
dependence on connectivity will drive the adoption of devices that

On-device approach helps reduce latency for
critical applications, lower dependence on the

cloud, and better manage the massive data
being generated by the 10T device.

computlng {;’-C’;-ore NE"EWDI-'EH“:I

N \ cage

intelligence \‘\\\\

where it is I—:J’)—

needed. ({H) T 1
h Things

O]

Illustration of an Edge Computing Architecture



Examples of Edge Al Applications

In-home smart cameras  On-device facial recognition On-board Al making Vision for baby
can recognize that a and object recognition, instantaneous driving monitors, drones,
person(s) has entered an where user data doesn't decisions robots, and other
area leave the device —_— devices that can
’ Eg:T;utopiIot respond to situations
Eg: NESt 1q cameras, Eg: £ neural engine without internet
y W Ty

QY\_E Deeplens connection
QV[, Al processor

HUAWEI Eg: <inte|] Myriad X

Cloud stores large datasets,
trains algorithms, collects edge
data, pushes Al model updates

Source: CBINSIGHTS 2018



Examples of Edge Al Applications

O Sangresert
Combining a 4K sensor with HDR and Intelligent Imaging
Uses on-device vision processing to watch for motion, distinguish
family members, and send alerts only if someone is not recognized or
doesn’t fit pre-defined parameters.

'v—

Hey Google, turn the thermostat to
72 degrees

-~ , a8

Turning the thermostat
to 72 degrees

Hey Google, add baby wipes to
shopping list

Adding baby wipes to
shopping list

https://nest.com/cameras/nest-cam-iq-indoor/overview/



Apple, Intel, and Google Edge Al-Chips

Apple released its A11 chip with a “neural engine” for iPhone 8 and
X. Apple claims it can perform machine learning tasks at up to

« It powers new iPhone features like FacelD, which scans a user’s face
with an invisible spray of light, without uploading or storing any user
data (or their face) in the cloud.

Intel released an on-device vision processing chip called Myriad X
(initially developed by Movidius, which Intel acquired in 2016).

« Myriad X promises to take on-device deep learning beyond
smartphones to devices like baby monitors and drones

Google proposed a similar concept with its “federated learning”
approach, where some of the machine learning “training” can
happen on your device. It’s testing out the feature in Gboard, the
Google keyboard.

s Al on the edge reduces latency. But unlike the cloud,

edge has storage and processing constraints.




Healthcare AI-Chips



Healthcare Al-Chips

PI*W"-‘

Many-core system
0.5 (1.0) Million ARM cores
Real-time simulator

144 Cortex MA4F per chip
36 GIPS/Watt per chip

Applications/Research Areas
Neuroscience: neuroinformatics; brain
simulation
Medicine: medical informatics; early
diagnosis; personalized treatment
Future computing: interactive
supercomputing; neuromorphic computing

Physical model system
4M neurons, 1B plastic syn.
Accelerated emulator

On-chip plasticity processor
Flexible hybrid plasticity
Active dendritic spatial structure

\ g ¢

mﬁa\km

https://www.humanbrainproject.eu/en/



Healthcare Al-Chips

Network Description PACMAN Binary Image SpiNNaker System

Network
Description

(eg PyNN, Nengo)

T

Many-core system
0.5 (1.0) Million ARM cores
Real-time simulator

Physical model system
4M neurons, 1B plastic syn.
Accelerated emulator

144 Cortex MA4F per chip : On-chip plasticity processor
36 GIPS/Watt per chip Flexible hybrid plasticity
: Active dendritic spatial structure

=

S @

https://www.humanbrainproject.eu/en/



Healthcare AI-Chips

The Human Brain Project

An EU ICT Flagship project (€1B budget)
80 partner institutes, led by Henry Markram, EPFL

é{*) The basic idea of the Human Brain Project
b

From Science to Infrastructures to Science and Innovation

Brain Simulation HPAC
Medlca.l Neuromorphic Neurorobotics
Informatics

Knowledge
About the brain
Basic Science

Co-Design

Mouse

Human

Cognition

Theory

Application in
brain technology
Innovation

https://www.humanbrainproject.eu/en/



..our work -
Homeostatic
Neuromorphic System

*this is not the scope of this talk



Architecture: Spike Packet Format

2 bits 3 bits 9 bits 6 bits 8 bits

‘ Type ‘ [Fault_flag] ‘ XYZ, ‘ Timestamp ‘ Neuron ID

e Type: ltis the header of the packet indicating this packet is
either for configuration or spike: '00"; system configuration; 11,
spike packet.

e [Fault Flag]: This is only used for the fault-tolerant multicast
routing algorithm

e XY /Z,.: Itisthe address of the source neuron tile, used for spike
routing.

e Timestamp: In spiking neuron network, the time of the
generated spike is used to encode the information.

e Neuron |D: this is the identifier of the pre-synaptic neuron.

Table 5: Power consumption of the KMCR and FTSP-KMCR
under the benchmarks.

System KMCR _ FTSP-KMCF{_
Inv. Pen. Wis. Inv. Pen. Wis.
Area (mm?) 0.102 0.346 0.108 0.365
Power (mWV) 10.13 34.20 10.64 35.92

-T_ll._l_ll.l_.

- Rate coding
~Spike coding

Output

“Number 3"

“Clasy 1"

“Spam”
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Architecture: Spiking Neural Processing Core

Table 6: MC-3DR Hardware Complexity Evaluation and

Comparison.
System Topology (f:ig) F:fx)r
EMBRACE router [Carrillo2012], 90nm 2D Mesh 0.056 1.72
HANA tile router [Liu2016], 90nm 2D Mesh 0.156 | 28.12
H-NoC cluster router [Crrillc ’HNoC], 65nm Star-Mesh 0.022 1.19
Clos-NoC spine switch [Hc 17], 45nm Custom Clos | 0.076 -
Clos-NoC leaf switch [Hojabr2017], 45nm Custom Clos | 0.061 -
MC-3DR router, 45nm (this work) 3D Mesh 0.031 1.66

PR ‘ — |
- A
] o| 28 To
From _%48_, s Synapse_crossbar — 3 "
router 8 (25642 bits = 8kB SRAM) S router
] &
| »| Synapse_memory |«—p|
H—P(25642 x Sbits = 40kB SRAM|
l »| Neuron_memory 256-
H—P1 (256 x 32bits = 1kB SRAM) LIF

Control Unit

5bits synapse register format

| Input type [0] | Synaptic strength [1:4] |

32bits neuron register format

| ial [0:7] | Threshold [8:15] | Leaky value [16:23] | Reset value [24:31]

Figure 12: Spiking Neuron Processing Core (SNPC) architecture !




Our work - Homeostatic Neuromorphic System
~ Average spike latency over varying the injection rate
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Figure 15: Average packet latency evaluation result

oThe H. Vu,Yuichi Okuyama, Abderazek Ben Abdallah, “Comprehensive Analytic Performance Assessment and K-means based Multicast Routing
Algorithms and Architecture for 3D-NoC of Spiking Neurons,” ACM Journal on Emerging Technologies in Computing Systems (JETC), Special Issue on
Hardware and Algorithms for Learning On-a-chip for Energy-Constrained On-Chip Machine Learning, Vol. 15, No. 4, Article 34, October 2019. doi:
10.1145/3340963

oThe H. Vu, Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah, “Fault-tolerant Spike Routing Algorithm and Architecture for Three Dimensior.al
NoC-Based Neuromorphic Systems’”, IEEE Access, vol. 7, pp. 90436-90452, 2019.
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Conclusions



Conclusions

 DNNs are a key component in the Al revolution.

 Efficient processing of DNNs is an important area
of research with many promising opportunities
for innovation at various levels of hardware
design, including algorithm co-design

 It’s important to consider a comprehensive set of
metrics when evaluating different DNN solutions:
accuracy, speed, energy, and cost



Conclusions

Memory access in Al-Chip is the bottleneck
- Worst case: ALL memory R/W are DRAM accesses
Ex. AlexNet [NIPS 2012] has 724M MACs - 2896M DRAM

accesses required

Possible HW/SW techniques to cope with the

memory access problem:

“*Advanced Storage Technology

« Embedded DRAM (eDRAM) - Increase on-chip storage capacity

3D Stacked DRAM -> Increase memory bandwidth

« Use memristors as programmable weights (resistance)
“+*Reduce size of operands for storage/compute

* Floating point 2 Fixed point

« Bit-width reduction
“+*Reduce number of operations for storage/compute

« Network Pruning; Compact Network Architectures
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