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Abstract. The purpose of the text is to give a brief overview of graph theory,
from a mathematical viewpoint. Starting with basic concepts, we proceed to var-

ious important topics, which are carefully selected to enjoy the colorful world of

graph theory. We study many familiar theorems and several uncommon theorems
originally found for this text. We supply possibly many figures and examples to

help readers understand the contents.

1 Graphs 1.1 definition

A pair G = (V,E) of sets is called a graph or a graph on V if E consists of some sets
of distinct two elements of V . Then V is called the vertex set (the set of all vertices)
of G, and E is called the edge set (the set of all edges) of G. The components V and
E of G are often denoted by V (G) and E(G), respectively. An edge e = {u, v} (uv for
short) is said to connect or join u and v, or u and v are called the end vertices of e. We
usually represent a graph by a figure, a vertex by a dot or a small circle, and an edge
uv by a line or a curve between u and v, where edges can cross each other. An edgeless
graph or an independent set is a graph with no edges. In particular, a graph with no
vertices and edges is called the empty graph, denoted by (∅,∅) or simply ∅, but for
simplicity, we usually exclude it from our thought. If V is finite then G is called finite,
otherwise G is called infinite.

It is sometimes convenient to allow a “graph” to have multiple edges (multi-edges),
loops or multiple loops (multi-loops). A “graph” which can have multi-edges and
(multi-)loops is called a multigraph. Here, multi-edges are all edges having the same
pair of end vertices, a loop is an edge that connects a vertex u to itself, written as uu,
and multi-loops are all loops having the same end vertex. A multi-edge (respectively,
multi-loop) refers to each single edge (respectively, loop) contained in some multi-edges
(respectively, multi-loops). Note that a loop is a kind of an edge in a multigraph. In
this text, a graph is assumed to have no multi-edges or loops, and so every graph is a
multigraph but not conversely.
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Figure 1. Graphs and multigraphs

Arbitrary multi-edges or multi-loops are regarded as distinct from each other, thus
to be exact, we give a unique name to every multi-edge or multi-loop as e : uv or f : uu,
respectively. For simplicity, however, we sometimes omit their names if confusion does
not occur. For a multigraph G = (V,E), the edge set E is really a set when edge names
are given, whereas E is a multiset when edge names are omitted.

The multiplicity of an edge uv (possibly u = v) is the number of edges uv, and the
multiplicity of a multigraph is the maximum multiplicity of its edges. The order of a
multigraph G is the cardinality of its vertices, and the size of G is the cardinality of
its edges. A multigraph of finite order and size is called finite, while one of infinite
order and/or size is called infinite. We assume that all multigraphs are finite, unless
specifically stated otherwise.

For a (multi)graph, vertices u and v (possibly u = v) are called adjacent, denoted
by u ∼ v, if an edge e = uv exists. Then e is called incident to the vertices u and v,
or u and v are incident to e. If an edge e = uv does not exist, then u and v are called
independent or u is independent from v. A vertex adjacent to v is called a neighbor of
v. Two distinct edges with at least one common end vertex are called adjacent. A set
of vertices or of edges is called independent if no two of its elements are adjacent.
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1.2 subgraphs

Let G = (V,E) be a (multi)graph. A (multi)graph G′ = (V ′, E′) made by taking
subsets V ′ ⊂ V and E′ ⊂ E is called a sub(multi)graph of G, where E′ contains only
some edges whose end vertices belong to V ′. Then G is called a super(multi)graph of
G′. By definition, G itself is a sub(multi)graph of G, and the other sub(multi)graphs
are called proper. In this section, hereafter definitions will be given only for graphs,
but can be given for multigraphs similarly.

A subgraph H of G is called a spanning subgraph or a factor of G if V (H) = V .
We say H spans G. Let S be a subset of V . A subgraph H of G such that V (H) = S
with the maximum edge set is uniquely determined by S, and is said to be an induced
subgraph of G, or induced by S, denoted by G[S].

We define a (partial) order over the set of all subgraphs of G by

(1) H ≤ H ′ ⇐⇒ H is a subgraph of H ′.

Then G[S] is nothing but the maximum subgraph H satisfying V (H) = S.
For a subset V ′ of V , we denote by G − V ′ a graph made by removing all vertices

in V ′ from G. Similarly, for a subset E′ of E, G−E′ is a graph made by removing all
edges in E′ from G. For a vertex or an edge x of G, we sometimes write G−{x} = G−x
for short. Further, for a subgraph H of G, G − H is a graph made by removing H
from G, it is nothing but G− V (H).

The subgraph of G induced by the set S of all neighbors of v (not including v itself)
is called the (open) neighborhood of v and denoted by NG(v). If S contains v itself,
then the subgraph induced by S is called the closed neighborhood of v, denoted by
NG[v]. When stated without any qualification, a neighborhood is assumed to be open.
The subscript G is usually dropped when there is no danger of confusion.

1.3 isomorphic graphs

Let G = (V,E) and G′ = (V ′, E′) be graphs. A mapping φ : V −→ V ′ is called an
isomorphism from G to G′ if φ is a bijection and satisfies

(2) u and v are adjacent in G ⇐⇒ φ(u) and φ(v) are adjacent in G′.

For multigraphs G and G′, an isomorphism from G to G′ is defined to be a bijection
φ : V −→ V ′ such that, for every u, v ∈ V ,

(3)
the number of edges uv = the number of edges φ(u)φ(v)
the number of loops uu = the number of loops φ(u)φ(u).

Two (multi)graphs G and G′ are said to be isomorphic, denoted by G ≃ G′, if there
exists an isomorphism from G to G′. We see as usual that:

(4)
G ≃ G, G ≃ G′ ⇐⇒ G′ ≃ G,
G ≃ G′, G′ ≃ G′′ =⇒ G ≃ G′′.

An isomorphism from G to itself is called an automorphism of G. The set of all
automorphisms of G forms a group with composition of automorphisms, which is called
the automorphism group of G.
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2-regular

4-regular,  isomorphic

3-regular
(Petersen graph)

Figure 2. Examples of regular graphs

(exercise) Write the vertex sets and the edge sets of the (multi)graphs in Figure 1
(giving names of vertices, if needed).

(exercise) Find several (induced) sub(multi)graphs of the (multi)graphs in Figure 1.
(exercise) Find an isomorphism between the graphs in the center of Figure 1.
(ans) For example:

(5)
v a b c d e f g h

φ(v) 6 7 5 3 8 2 1 4

(exercise) Determine the automorphism group of independent n vertices.

1.4 the degrees of vertices

Let G be a multigraph. The degree of a vertex v, denoted by deg(v), is the number
of edges incident to v, with loops vv being counted twice. We have the following.

Theorem 1.1. (Handshaking lemma) Let G be a multigraph with the vertices v1, . . . , vp
and q edges, then

(6)

p
∑

i=1

deg(vi) = 2q.

Proof. Every non-loop edge is incident to distinct two vertices, and every loop is
incident to one vertex. Thus if one counts up the degrees of all vertices, then every
edge is counted twice. �
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A vertex of even (respectively, odd) degree is called an even (respectively, odd)
vertex. A vertex of degree 0 is called isolated. A vertex of degree 1 is called a leaf
or pendant (vertex). The maximum degree ∆(G) of G is the largest degree over all
vertices; the minimum degree δ(G), the smallest.

A graph consisting of a single isolated vertex is called a trivial (singleton) graph.
A multigraph in which every vertex has the same degree (k) is called (k-)regular. A
0-regular graph is an independent set. A 1-regular graph is a matching. A 2-regular
multigraph is a vertex disjoint union of cycles. A 3-regular multigraph is said to be
cubic, or trivalent. A k-factor is a k-regular spanning submultigraph. A 1-factor is a
perfect matching. A 2-factor is spanning cycles. A partition of edges of a multigraph
into k-factors is called a k-factorization. A k-factorable multigraph is one that admits
a k-factorization.

The weakly decreasing sequence1 of the degrees of all vertices of G is called the
degree sequence of G. Isomorphic graphs have the same degree sequence, but the
converse does not hold. A sequence of (usually weakly decreasing) integers is called a
graphic(al) sequence if (the weakly decreasing arrangement of) it is the degree sequence
of some graph.

Theorem 1.2. A weakly decreasing sequence d1, d2, . . . , dn is graphic if and only if
d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn is graphic (allowed dd1+1 − 1 < dd1+2).

Proof. Let d1, d2, . . . , dn be a weakly decreasing sequence of nonnegative integers.
Suppose d2−1, . . . , dd1+1−1, dd1+2, . . . , dn is graphic. Let H be a graph whose degree
sequence is the weakly decreasing arrangement of d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn,
that correspond to the vertices v2, . . . , vn, respectively. We can construct a graph G
by adding a new vertex v1 and edges v1vk (k = 2, . . . , d1+1), so that G has the degree
sequence d1, . . . , dn. Hence this sequence is graphic as desired.

Conversely, letG be a graph with the degree sequence d1, . . . , dn corresponding again
to v1, . . . , vn. If the first d1 large degree vertices v2, v3, . . . , vd1+1 except v1 are adjacent
to v1, then we can remove v1 and the edges incident to v1 to get a graphH whose degree
sequence is the weakly decreasing arrangement of d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn.
Otherwise, we have the first vertex vi independent from v1, and after vi, we have the
first vertex vj adjacent to v1, where di ≥ dj . Then there exists a vertex vk adjacent
to vi and independent from vj . (If not, we have di < dj , contradiction.) Now remove
the edges v1vj , vivk, and add the edges v1vi, vjvk. This process does not change the
degree sequence, but it pushes back the position of the first vertex independent from
v1. Repeating this process, we reach the first case. �

(exercise) Find two non-isomorphic graphs with the degree sequence 2,2,2,2,2,2.
(exercise) Find all non-isomorphic graphs with the degree sequence 2,2,2,2,2,2,2,2,2.
(exercise) Find several non-isomorphic graphs with the degree sequence 3,3,2,2,1,1.
(exercise) Which are graphic? (1) 8,7,7,6,5,3,2,2,2,2,1,1. (2) 6,6,6,6,6,6,6,6,6,6.

(3) 9,8,7,7,7,6,5,4,2,1. (4) 5,5,5,4,4,4,3,3,3,2,2,2,1,1,1. (5) 9,9,9,8,7,6,5,5,4,3,2,1,1,1.

1A sequence a0, a1, a2 . . . is called weakly (respectively, strictly) decreasing if ai ≥ ai+1 (respec-
tively, a1 > ai+1) for all i, and it is called weakly (respectively, strictly) increasing if ai ≤ ai+1

(respectively, a1 < ai+1) for all i.
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(exercise) Prove n, n, n− 1, n− 1, . . . , 1, 1 is graphic.

walks

trails

paths

circuits cycles

Figure 3

1.5 walks, trails, paths

Let G be a multigraph. For n ≥ 0, an alternating sequence of vertices and edges of
G, beginning and ending with vertices:

(7) w = v0e1v1e2v2 . . . vn−1envn,

where ei connects vi−1 and vi for every i = 1, . . . , n, is called a walk of length n from v0
to vn (between v0 and vn) in G. Here v0 and vn are connected by w, and are called the
initial and terminal vertices of w, respectively, or simply the end vertices (ends) of w.
The vertices v1, v2, . . . , vn−1 are called inner vertices of w. We say w passes (through)
each of v0, . . . , vn and e1, . . . , en. For a submultigraph H, if w passes some vertex or
edge of H, then we say w meets H. For a set of vertices X or a set of edges F , if w
passes some element of X (respectively, F ), then we say w meets X (respectively, F ).
If v0 = vn, w is called closed, otherwise w is called open. In a walk, we can use vertices
and edges repeatedly. Restricting walks by several conditions, we have the following
classification.

a walk no restrictions
a trail every edge can be used at most once
a path every vertex can be used at most once
a circuit a closed trail of length ≥ 1
a cycle a circuit with distinct vertices except for the end vertices

A cycle of length n is called an n-cycle, which is denoted by Cn. An even (re-
spectively, odd) cycle is defined to be a cycle of even (respectively, odd) length. One
theorem is that a graph is bipartite if and only if it contains no odd cycles. A path of
length n − 1 (on n vertices) is denoted by Pn. The symbols Cn and Pn are also used
for subgraphs that they pass through.

A path is a trail, and a trail is a walk. A trivial path is a path of length 0, a
path from a vertex to itself. A cycle is a circuit. The minimum length of cycles is 3
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in a graph, but 1 or 2-cycles can exist in a multigraph. A walk (respectively, trail,
path) from u to v is called a (u, v)-walk (respectively, (u, v)-trail, (u, v)-path), and is
sometimes written as u −→ v for short. A walk can be also represented as a sequence
of vertices when confusion does not occur.

A word span(ning) is used for the meaning of including all vertices, for example, we
say spanning walks, spanning circuits, spanning subgraphs, etc.

A graph is called acyclic if it contains no cycles; unicyclic if it contains exactly
one cycle (up to the choice of the initial vertex and the direction); and pancyclic if it
contains cycles of every possible length (from 3 to the order of the graph).

The girth of a graph is the length of a shortest cycle in the graph; and the circum-
ference, the length of a longest cycle. The girth and circumference of an acyclic graph
are defined to be infinity ∞.

A spanning cycle (respectively, path) is called a Hamiltonian cycle (respectively,
path), and a graph that contains a Hamiltonian cycle is called a Hamiltonian graph.
A graph that contains a Hamiltonian path is traceable; and one that contains a Hamil-
tonian path for any given pair of (distinct) end vertices is a Hamiltonian connected
graph.

A trail is called Eulerian if it uses all edges of a multigraph. A closed Eulerian trail
is called an Eulerian circuit. A multigraph that contains an Eulerian trail is called
traversable, and a (multi)graph that contains an Eulerian circuit is called an Eulerian
(multi)graph.

Several paths are called (vertex-)independent (internally vertex-disjoint) if no two
of them have any vertex in common, except the initial and terminal ones. Similarly,
several paths are called edge-independent (edge-disjoint) if no two of them share any
edge. The maximum number of independent (u, v)-paths is written as κ′(u, v), and the
maximum number of edge-independent (u, v)-paths is written as λ′(u, v).

Theorem 1.3. If a walk u −→ v exists, then we have a path u −→ v by taking a
shortcut. Similarly, if a circuit passing an edge e exists, then we have a cycle passing
e.

(exercise) Find several walks, trails, paths, circuits, cycles in (multi)graphs in Fig-
ure 1-2.

Figure 4
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Figure 5

1.6 examples of graphs

If a (multi)graph G has a path between every two (distinct) vertices, then G is called
connected. Otherwise, G is called disconnected. A maximal connected sub(multi)graph
of G is called a (connected) component of G. The left graph in Figure 2 has two
components, and the left graph in Figure 4 has three components: two rectangles and
one cross.

A graph on n vertices where any distinct two vertices are adjacent is called the
complete graph on n vertices, denoted by Kn. The size of Kn is

(
n
2

)
. Kn is (n − 1)-

regular.
For a graph G = (V,E), if a partition {V1, . . . , Vs} of V exists such that every cell

Vi is independent (no two vertices in the same cell are adjacent) and any two vertices
belonging to distinct cells Vi, Vj are adjacent, then G is called a complete s-partite
(complete multipartite) graph. When |Vi| = pi (i = 1, . . . , s), write G = Kp1,...,ps

.
A graph is called s-partite (multipartite) if it has a partition of V into at most s
independent cells. Every subgraph of a complete s-partite graph is s-partite. For
s = 2, 3, 2-partite and 3-partite are also called bipartite and tripartite, respectively. A
graph is s-partite if and only if it is s-colorable. (See §1.9. Identify the cells of a graph
with color classes.)

A cycle graph or circular graph of order n is a graph that consists of a single n-cycle,
denoted by Cn. A path graph of order n is a graph that consists of a path of length
n− 1, denoted by Pn.

A wheel graph Wn is a graph on n vertices (n ≥ 4), formed by connecting a single
vertex to all vertices of Cn−1.

A tree is a connected graph with no cycles, say, connected acyclic graph. A graph
consisting of a single vertex is called a trivial tree. A tree of order n and diameter at
most 2 is called an n-star, denoted by Sn, which is isomorphic to K1,n−1. A tree on n
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vertices of degree at most 2 is a path graph Pn. A tree can be characterized in many
ways.

Theorem 1.4. Let G be a graph with p vertices and q edges, then the following
conditions are equivalent: (i) G is a tree. (ii) G is connected and p = q + 1. (iii) G is
acyclic and p = q + 1. (iv) For any vertices u, v of G, there exists a unique path from
u to v.

A proof of this theorem is given in Chapter 4.
A forest is an acyclic graph. Every component of a forest is a tree, that is, a forest

is a collection of trees.
(exercise) How many cycle graphs does Kn have? (especially n = 4, 5) (7,37)
(exercise) How many cycle graphs does Wn have?
(exercise) Find all trees on at most 8 vertices up to isomorphism.

1.7 connectivity

Let G = (V,E) be a connected multigraph. A cut vertex of G is a vertex whose
removal from G disconnects the remaining submultigraph. A cut set, or vertex cut
or separating set, of G is a set of vertices whose removal from G disconnects the
remaining submultigraph. A bridge of G is an edge whose removal from G disconnects
the remaining submultigraph. A disconnecting set of G is a set of edges whose removal
from G disconnects the remaining submultigraph. These terms are also used for a
disconnected multigraph when their removals increase the number of components. An
edge cut of G (with respect to S, V − S) is the set of all edges which have one end
vertex in some proper nonempty vertex subset S and the other end vertex in V − S.
All edges of K3 form a disconnecting set but not an edge cut. Any two edges of K3

form a minimum disconnecting set as well as an edge cut. An edge cut is necessarily
a disconnecting set; and a minimum disconnecting set is necessarily an edge cut. A
bond is a minimal (but not necessarily minimum) disconnecting set.

Let k be a positive integer. A connected multigraph G is said to be k-vertex-
connected or k-connected if G has more than k vertices and any submultigraph formed
by removing any k− 1 vertices is still connected, or equivalently, if the size of any cut
set of G is greater or equal to k. By definition, a k-connected multigraph is l-connected
for every 1 ≤ l ≤ k. The (vertex) connectivity κ(G) of G is the minimum size of a cut
set of G, that is the greatest number k such that G is k-connected, and therefore G is
k-connected for and only for 1 ≤ k ≤ κ(G). (The above definitions are not clear when
G = Kn or G is a supermultigraph of Kn on n vertices because it has no cut sets; see
below and §3.1.)

A connected multigraph G is said to be k-edge-connected if G has at least k non-loop
edges and any submultigraph formed by removing any k−1 edges is still connected, or
equivalently, if the size of any disconnecting set is greater or equal to k. By definition,
a k-edge-connected multigraph is l-edge-connected for every 1 ≤ l ≤ k. The edge
connectivity λ(G) of G is the minimum size of a disconnecting set of G, that is the
greatest number k such thatG is k-edge-connected, and therefore G is k-edge-connected
for and only for 1 ≤ k ≤ λ(G). (The above definitions are not clear when G has only
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one vertex because it has no disconnecting sets; see below and §3.1.) One well-known
result is that κ(G) ≤ λ(G) ≤ δ(G). (See §3.1.)

A (nontrivial) tree is 1-(edge-)connected, but not 2-(edge-)connected, thus it has
vertex and edge connectivity 1. For n ≥ 2, the complete graphKn has edge connectivity
n − 1, and is defined to have vertex connectivity n − 1. For n = 1, K1, say a trivial
tree (trivial graph) is defined to have vertex/edge connectivity 0. The vertex and edge
connectivity of a disconnected multigraph are defined to be 0.

Theorem 1.5. A connected multigraph has no bridges on its cycle (circuit). Further-
more,

(8) e is on a cycle ⇐⇒ e is not a bridge

Proof. (⇒) Let G be a connected multigraph with a cycle C. Take any edge e on C
and let G′ = G− e. For any vertices u, v of G, we have a (u, v)-path w in G. If w does
not pass through e, then w is also in G′. Otherwise, we have

(9) w = u . . . xey . . . v.

Then we can go a long way round on C instead of xey, and have a new walk

(10) w′ = u . . . xe1x1 . . . xn−1eny . . . v.

This does not pass e, and thus it is in G′. If it is not a path, then we can have a
short-cut path u −→ v in G′. �

(⇐) If e = xy is not a bridge, then we have a path x −→ y not passing e. Adding e to
this path, we have a cycle. �

(exercise) Find all cut vertices and bridges of the right graph in Figure 4.
(exercise) Find a graph with 3 cut vertices and 3 bridges.
(exercise) Find several graphs of connectivity ≤ 3 and edge-connectivity ≤ 3.
(exercise) Determine the connectivities and edge-connectivities of the (multi)graphs

in Figure 5,6.

Figure 6
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1.8 distance and diameter

Let G be a multigraph. The distance d(u, v) between two (not necessarily distinct)
vertices u and v of G is defined to be the length of a shortest path between them. By
definition, d(u, u) = 0. When u and v are unreachable from each other, their distance
is defined to be ∞. Thus, if two vertices belong to distinct components, their distance
is ∞. The distance d(u, v) satisfies the following axioms of distance.

(11)

d(u, v) ≥ 0
d(u, v) = 0 ⇐⇒ u = v
d(u, v) = d(v, u)
d(u, v) ≤ d(u, x) + d(x, v)

The eccentricity ǫ(v) of a vertex v is the maximum distance between v and any other
vertex. If G is not connected, ǫ(v) = ∞ for all vertices v. The diameter diam(G) of
G is the maximum distance between any two vertices, i.e., the maximum eccentricity
over all vertices of G. The radius rad(G) is the minimum eccentricity over all vertices.
For disconnected G, diam(G) = rad(G) = ∞. Vertices of maximum eccentricity (=
diam(G)) are called peripheral vertices. Vertices of minimum eccentricity (= rad(G))
form the center. A tree has 1 or 2 center vertices. For two vertices u, v of maximum
distance, taking a center vertex x, we have

(12)
diam(G) = d(u, v) ≤ d(u, x) + d(x, v) ≤ rad(G) + rad(G).

∴ diam(G) ≤ 2 rad(G).

The Wiener index of a vertex v of G, denoted by W (v) is the sum of distances
between v and all others. The Wiener index of G, denoted by W (G), is the sum of
distances between all unordered pairs of distinct vertices. The Wiener polynomial of
G is defined to be the sum

(13) W (G; q) =
∑

{u,v}
qd(u,v)

over the same set of pairs as before.
For sub(multi)graphs H1, H2 of G, the distance d(H1, H2) between them is defined

to be the length of a shortest path between a vertex of H1 and a vertex of H2.
A k-spanner of a graph G is a spanning subgraph, H, in which every two vertices

are at most k-times as far apart on H than on G. The number k is called the dilation.
k-spanners are used for studying geometric network optimization.

The k-th power Gk of a graph G is a supergraph of G formed from G by adding
an edge between every nonadjacent pair of vertices whose distance is at most k. The
second power G2 is also called the square of G, the third power G3 is called the cube
of G, etc.

(exercise) Show (11).
(exercise) Determine the diameters of the graphs: the center of Figure 1, the center

and right of Figure 2, and the right of Figure 4. (ans) 3,2,2,4.
(exercise) Determine the centers and the peripheral vertices of those graphs.
(exercise) Calculate the Wiener polynomials of Pn and Cn.
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1.9 coloring and labeling

Graph coloring is an assignment of labels named “colors” to elements of graphs
under certain restrictions. For a graph G, a (vertex) coloring of G, one kind of graph
coloring, is to assign colors to the vertices so that adjacent vertices have distinct colors.
A k-coloring of G is a coloring of G with at most k colors. G is k-colorable if G has
a k-coloring. The chromatic number χ(G) of G is the smallest k for which G has a
k-coloring. If χ(G) = k, then G is called a k-chromatic graph. A minimum coloring
of G is a coloring of G with χ(G) colors. It is well known that Kk and Kp1,...,pk

are
k-chromatic graphs.

Given a coloring of G, a color class of G is a set of vertices given the same color.
G is k-critical if χ(G) = k but every proper subgraph of G has a smaller chromatic
number. An odd cycle is 3-critical, and Kk is k-critical. G is critical if it is k-critical
for some k.

The above definitions are naturally extended to multigraphs without loops, where
multi-edges have no more effect than a single edge on vertex colorings. But a multi-
graph containing a loop vv has no vertex coloring, because by definition, v can not be
colored.

An edge coloring of a multigraph G, another kind of graph coloring, is to assign
colors to the edges so that adjacent edges have distinct colors. A k-edge-coloring of
G is an edge coloring of G with at most k colors. G is k-edge-colorable if G has a
k-edge-coloring. The chromatic index, or edge chromatic number, χ′(G) of G is the
smallest k for which G has a k-edge-coloring. If χ′(G) = k, then G is called a k-edge-
chromatic graph. A minimum edge coloring of G is an edge coloring of G with χ′(G)
colors. Different from vertex colorings, multi-edges and loops have a considerable effect
on edge colorings.

Graph labeling is a generalization of graph coloring, referring to vertex labelings or
edge labelings. Given a graph G = (V,E), a vertex labeling is simply a function from
V to a set of labels, usually represented by integers or sometimes by real numbers. A
graph with such a function defined is called vertex-labeled. Similarly, an edge labeling
is a function from E to a set of labels, then the graph is called edge-labeled. These
definitions are also extended to multigraphs, without now, any restrictions.

When used without qualification, the term labeled graph generally refers to a vertex-
labeled graph with all labels distinct. Such a graph may equivalently be labeled by the
consecutive integers {1, 2, . . . , n}, where n is the order of the graph.

(exercise) Find minimum colorings and minimum edge colorings of the graphs in
Figure 5, and the graphs (1),(2) in Figure 16.

(exercise) For every k = 1, . . . , 5, find several graphs with a chromatic number/index
of k.

(exercise) Find several critical graphs.
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1.10 multigraphs and matrices

Let G be a multigraph on v1, . . . , vp with edges e1, . . . , eq. The adjacency matrix
A = (aij) (i, j = 1, . . . , p) of G is defined as follows.

(14) aij = (the number of edges vivj)

The incidence matrix M = (mij) (i = 1, . . . , p; j = 1, . . . , q) of G is defined by

(15) mij =

{
1 (ej is incident to vi)
0 (otherwise)

Each of the above two matrices of G can uniquely reconstruct G up to isomorphism.
The Laplacian matrix L = (lij) (i, j = 1, . . . , p) of G, sometimes called admittance

matrix, Kirchhoff matrix or discrete Laplacian, is defined as L = D − A, where D =
(dij) is the degree matrix of G, a diagonal p× p matrix indicating the degree of vi by
dii, and A is the adjacency matrix of G. The Laplacian matrix is used to calculate the
number of spanning trees of a given multigraph without loops.

By definition, the adjacency/Laplacian matrix of a multigraph is always symmetric.
Conversely, any symmetric matrix with nonnegative integer entries is represented as
an adjacency matrix of some multigraph. We have

Theorem 1.6. Let A be the adjacency matrix of a multigraph G. Let An =
(

a
(n)
ij

)

,

then

(16) a
(n)
ij = (the number of walks vi −→ vj of length n).

Proof. By induction on n. It is valid for n = 1 because a walk of length 1 corresponds
to an edge. Suppose it is valid for n− 1. As An = AAn−1,

(17)

a
(n)
ij =

∑p

k=1 aika
(n−1)
kj

=
∑p

k=1 (the number of walks vi −→ vk of length 1)
×(the number of walks vk −→ vj of length (n− 1))

= (the number of walks vi −→ vj of length n).

Thus the proposition is valid for n, and the induction is completed. �

Theorem 1.7. Let G be a multigraph on p vertices, A the adjacency matrix of G, and
Ep the identity matrix of degree p, then

(18) G is connected. ⇐⇒ Ep + A+A2 + · · ·+ Ap−1 has no 0 entries.

Proof.

(19)
G is connected ⇐⇒ a path u −→ v exists for any u, v
⇐⇒ a (u, v)-walk of length ≤ p− 1 exists for any u, v
⇐⇒ Ep + A+ A2 + · · ·+ Ap−1 has no 0 entries.

�

The definitions of the above-mentioned three matrices of a multigraph G depend on
the ordering of the vertices or edges of G. For the adjacency matrix or the Laplacian
matrix, however, several properties such as the characteristic polynomial, eigenvalues,
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determinant, and minors (up to signs) are uniquely determined irrespective of the order
of the vertices. Let

(20) Ep =






e1
...
ep




 .

Then for a permutation τ of p letters, let

(21) Pτ =






eτ(1)
...

eτ(p)






be the permutation matrix of τ . We can confirm the following properties:

(22)
PσPτ = Pτ◦σ
P−1
τ = Pτ−1 = PT

τ .

When one changes the order of the vertices of G, the matrices A,L of G are also
changed to A′ = PτAPT

τ , L′ = PτLP
T
τ . Hence we have, for example, |A′| = |A|, and

ΦA′(t) = |tEp −A′| = |Pτ (tEp −A)PT
τ | = |tEp −A| = ΦA(t), which, the characteristic

polynomial of the adjacency matrix, we call the characteristic polynomial of G denoted
by ΦG(t), and its roots are called the eigenvalues of G. Since A is symmetric, all
eigenvalues of G are real. The (multi)set of all eigenvalues of G is called the spectrum
of G. A nonzero vector x that satisfies the eigenequation Ax = λx for some eigenvalue
λ is called an eigenvector of A (or G) associated with λ, which depends on the order
of the vertices.

Anyway, it is recommended to order the vertices/edges in every component to sim-
plify the matrices. Let G1, . . . , Gs be the components of G, and v1, . . . , vp; e1, . . . , eq
be the vertices and edges, respectively, ordered from G1 to Gs. Then the adjacency,
incidence and Laplacian matrices of G are written as

(23)

A =







A1 O . . . O
O A2 . . . O
. . . . . . . . . . . . . . . . . .
O . . . O As







M =







M1 O . . . O
O M2 . . . O
. . . . . . . . . . . . . . . . . . .
O . . . O Ms







L =







L1 O . . . O
O L2 . . . O
. . . . . . . . . . . . . . . . .
O . . . O Ls







,

where Ai, Mi, Li are the adjacency, incidence and Laplacian matrices of Gi, respec-
tively. By this expression, letting the order of Gi be p(i), we have

(24)

ΦG(t) = ΦA(t) = |tEp − A| =

s∏

i=1

|tEp(i) −Ai|

=

s∏

i=1

ΦAi
(t) =

s∏

i=1

ΦGi
(t).
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(exercise) Write the adjacency/incidence/Laplacian matrices of the following multi-
graph G.

(exercise) Calculate the characteristic polynomial of G and find several eigenvalues.

e9 e10

v5

v6
e11

v1 v2

v4 v3

e1

e2 e3 e4 e5

e6 e7

e8

Figure 7

(ans)

(25)















0 1 2 1 0 0
1 0 1 0 0 0
2 1 2 1 0 0
1 0 1 0 0 0
0 0 0 0 0 2
0 0 0 0 2 1





























1 1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 1





























4 −1 −2 −1 0 0
−1 2 −1 0 0 0
−2 −1 6 −1 0 0
−1 0 −1 2 0 0
0 0 0 0 2 −2
0 0 0 0 −2 3















(ans) ΦG(t) = t(t3 − 2t2 − 8t− 4)(t2 − t− 4).
(exercise) Calculate the characteristic polynomials of Kn and Km,n, and find all

eigenvalues. (ans) ΦKn
(t) = (t− n+ 1)(t+ 1)n−1, ΦKm,n

(t) = tm+n−2(t2 −mn).
(exercise) Let ΦPn

= Φn, then show that Φn = tΦn−1 − Φn−2.
(exercise) Calculate the characteristic polynomials of Cn and Wn for n ≤ 6.
(exercise) Show that every n-regular graph has an eigenvalue n.
(exercise) Let G = Kp,...,p be a complete s-partite graph on n vertices. Show that

ΦG(t) = tn−s(t+ p)s−1(t− n+ p).

Theorem 1.8. Let G = Kp1,...,ps
be a complete s-partite graph on n vertices. We

have

(26) ΦG(t) = tn−s

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t −p2 −p3 . . . −ps
−p1 t −p3 . . . −ps
−p1 −p2 t . . . −ps
. . . . . . . . . . . . . . . . . . . . . . . . . . .
−p1 −p2 −p3 . . . t

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where for s = 1, G is regarded as an independent set.
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Proof. For G = Kp1,...,ps
, denote Φp1,...,ps

= ΦG(t). Denote by 1pq a p × q matrix
consisting of only 1’s. By definition, Φp1,...,ps

is expressed by the determinant:

(27)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

tEp1
−1p1p2

−1p1p3
. . . −1p1ps

−1p2p1
tEp2

−1p2p3
. . . −1p2ps

−1p3p1
−1p3p2

tEp3
. . . −1p3ps

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−1psp1

−1psp2
−1psp3

. . . tEps

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Subtract the second row from the first row, and again subtract the second column from
the first column. By the cofactor expansion along the first row (or column), we have
the following recursive formula:

(28) Φp1,...,ps
= 2tΦp1−1,p2,...,ps

− t2Φp1−2,p2,...,ps
(p1 ≥ 2),

where we set Φ0,p2,...,ps
= Φp2,...,ps

. We can confirm that (26) satisfies (28) and the
initial conditions: Φ1,...,1 = ΦKn

and Φp = tp. �
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2 Eulerian/Hamiltonian multigraphs

2.1 Eulerian multigraphs

There is a simple criterion to determine whether a finite (multi)graph is Eulerian/tra-
versable or not, it says:

Theorem 2.1. Let G be a finite connected (multi)graph, then

G is an Eulerian (multi)graph ⇐⇒ G has no odd vertices(29)

G is traversable ⇐⇒ G has 0 or 2 odd vertices(30)

Proof. (29) (⇒) Let G be an Eulerian multigraph, and w be its Eulerian circuit. Take
an arbitrary vertex v and consider its degree. If v is not the initial (= terminal) vertex
of w, then the Eulerian circuit w consumes exactly two edges (every loop is counted
twice) incident to v as it passes through v, until it exhaust all edges incident to v. If
v is the initial (= terminal) vertex, w consumes first one edge, next two edges as w
passes, finally one edge. Hence v has even degree. Therefore G has no odd vertices. �

(⇐) Let G be connected and has no odd vertices. Let w be one of the longest closed
trails in G. We show w is an Eulerian circuit by reduction to absurdity. Suppose w is
not an Eulerian circuit. Then there exist edges not on w, and some of them, say e, is
incident to some vertex on w. For, if not, a vertex on w can not reach any vertices not
on w by a path, but G is connected, thus w spans G, and so e exists, contradiction.
Hence suppose e not on w is incident to u on w. Now we develop a trail w′ from ue
not using edges on w, as long as possible. Then w′ returns to u, because the number of
edges incident to each vertex is even, and the number of already used ones by w is also
even, hence even edges incident to each vertex remain unused, and when w′ comes to
v, odd edges incident to v remain, and w′ can go ahead until it returns to u. Thus we
have w′ = ue . . . e′u. We compose w = ue1 . . . enu and w′ as w̃ = ue1 . . . enue . . . e

′u,
which is longer than w, contradiction. �

(30) (⇒) Let G be traversable and w = u . . . v (possibly u = v) be an Eulerian trail.
Clearly, we have an Eulerian multigraph G′ by adding an edge uv. By (29), G′ has
no odd vertices, and so G has no odd vertices except u, v. If u = v, all vertices are
even. �

(⇐) Let G be connected and satisfy the right hand side of (30). If G has no odd
vertices, by (29), G has an Eulerian circuit. If G has exactly two odd vertices u, v, by
adding an edge uv, we have G′ without odd vertices. Then by (29), G′ has an Eulerian
circuit, and therefore G has an Eulerian trail. �

A general (not necessarily connected) Eulerian multigraph is composed of a con-
nected Eulerian component and isolated vertices. Similarly, a general traversable
multigraph is composed of a connected traversable component and isolated vertices.
Therefore we have the following.
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Theorem 2.1’. Let G be a finite (multi)graph. (i) G is an Eulerian (multi)graph if
and only if G is connected except isolated vertices, and has no odd vertices. (ii) G is
traversable if and only if G is connected except isolated vertices, and has 0 or 2 odd
vertices.

(exercise) Find all Eulerian graphs of order ≤ 6, and also several connected Eulerian
multigraphs.

(exercise) Find all traversable graphs of order ≤ 6, and also several connected tra-
versable multigraphs.

an Eulerian and Hamiltonian graph a Hamiltonian graph

an Eulerian graph

Figure 8

2.2 Hamiltonian graphs

In general, no good criteria are known to determine whether a graph is Hamiltonian
or not. It is a difficult open problem in graph theory.

(exercise) Let Lm,n denote a lattice graph consisting of a rectangular array of m×n
vertices, where every horizontally or vertically “adjacent” pair of vertices is connected
by an edge. The upper right graph in Figure 8 is L4,6. Show that Lm,n is Hamiltonian
if and only if mn is even.
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3 Connectivity 3.1 vertex/edge connectivity

In Section 1.7, we defined the vertex/edge connectivity of a multigraph. That is the
minimum size of a cut/disconnecting set of a multigraph. However, the trivial graph
K1 is specially treated, the vertex/edge connectivity of K1 is defined to be 0, although
it is a connected graph. A looped vertex, say, a multigraph on one vertex with several
loops, is also defined to have vertex/edge connectivity 0. After this definition, edge
connectivity is clearly defined, whereas vertex connectivity has something cumbersome
yet. First of all, note that vertex/edge connectivity is independent of whether loops
exist or not, and vertex connectivity is independent of whether the multiplicity of an
edge is 1 or not. Next, the complete graph Kn can not be disconnected by removing
vertices; the vertex connectivity of Kn is defined to be n − 1. Every supermultigraph
of Kn on n vertices is also defined to have vertex connectivity n− 1.

Theorem 3.1. Let G be a connected multigraph. An edge cut of G is necessarily a
disconnecting set of G; and a minimum disconnecting set of G is necessarily an edge
cut of G.

Proof. Let F be an edge cut of G with respect to S, V − S. Then it is clear that F is
a disconnecting set of G. Let F be a minimum disconnecting set of G. Then G − F
consists of exactly 2 components, say, H,H ′, because of the minimality of F . Hence
F is an edge cut of G with respect to V (H), V (H ′). �

ForG = Kn, consider the edge connectivity ofG. Let F be a minimum disconnecting
set of G. By this theorem, F is an edge cut of G with respect to some S, S′. Then we
can see easily that the minimum value of |F | is n− 1, say, λ(G) = n− 1.

Theorem 3.2. (H. Whitney) Let G be a finite multigraph, then κ(G) ≤ λ(G) ≤ δ(G).

Proof. If G is disconnected, the inequality is clear. Hence let G = (V,E) be a finite
connected multigraph. If δ(G) = deg(v), we can disconnect G by removing all edges
incident to v. Thus λ(G) ≤ δ(G). Next we prove κ(G) ≤ λ(G). For simplicity, we
may assume that G has no loops. Also, we assume that G has no multi-edges, because
multi-edges make only the edge connectivity increase. If G is a complete graph, then
κ(G) = λ(G). Hence, it suffices to show the inequality for a finite connected graph
G which is not complete. Let F be a minimum disconnecting set of s edges. By
Theorem 3.1, F is an edge cut of G and G − F has exactly 2 components H,H ′. Let
S = V (H), S′ = V (H ′) = V − S. Let V ′ be the set of end vertices of all edges in F .
Let T = S ∩ V ′ and T ′ = S′ ∩ V ′. If T 6= S, then we remove all elements of T from
G to remove all of F , this can be done by deletion of at most s vertices, in order to
disconnect G. The case T ′ 6= S′ is treated similarly.

Thus, consider the case that T = S, |T | = m, and T ′ = S′, |T ′| = n. Suppose there
exist nonadjacent vertices x, x′ such that x ∈ T and x′ ∈ T ′. Then removing at most
s vertices except x, x′ to remove all of F , we have a disconnected graph including x
and x′. Next suppose any vertices x ∈ T and x′ ∈ T ′ are adjacent. Then there exist
vertices x, y ∈ T or x′, y′ ∈ T ′ such that x, y or x′, y′ are not adjacent, because G is
not complete. Let x, y ∈ T be nonadjacent vertices. Remove all vertices of G except
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x and y, then we have a disconnected graph of independent vertices x, y. The number
of removed vertices are m+ n− 2, which is less than s = mn. �

3.2 Menger’s theorem

Menger’s theorem is one of the most important facts about connectivity in graphs,
which combines the local connectivity and the number of independent paths. Let
u, v be vertices of a graph G. The local connectivity κ(u, v) between u and v is the
minimum number of vertices (except u and v) that need to be removed to separate
u from v (to kill all (u, v)-paths). Clearly κ(u, v) = κ(v, u), say, local connectivity is
symmetric. Similarly, the local edge-connectivity λ(u, v) is the minimum number of
edges to remove to separate u from v, which is also symmetric. Then Menger’s theorem
says:

Theorem 3.3. (K. Menger, 1927) Let G be a finite graph, and u, v be distinct vertices
of G, then

(31)
κ(u, v) = κ′(u, v) (u, v are nonadjacent)
λ(u, v) = λ′(u, v).

To prove this, we show another version of Menger’s theorem (Theorem 3.4). First we
introduce several notions. Let G be a multigraph, and let A,B be two sets of vertices
of G. An A-B path is a path from a vertex in A to a vertex in B. An A-B path is
proper if inner vertices are not in A nor B. Every A-B path contains a proper A-B
path as a part.

A set of vertices X separates A from B (X is a separating set between A and
B) if every (proper) A-B path meets X . (This definition is independent of whether
“proper” is used or not.) If |X | = s, then X is an s-separating set between A and B.
Let κ(G,A,B) denote the minimum size of a separating set between A and B in G.

A set of edges F disconnects A from B (F is a disconnecting set between A and
B) if every (proper) A-B path meets F . If |F | = s, then F is an s-disconnecting set
between A and B. Let λ(G,A,B) denote the minimum size of a disconnecting set
between A and B in G.

Several A-B paths are (vertex-)disjoint if no two of them share any vertex. Let
κ∗(G,A,B) denote the maximum number of disjoint (proper) A-B paths in G. Several
A-B paths are edge-disjoint if no two of them share any edge. Let λ∗(G,A,B) denote
the maximum number of edge-disjoint (proper) A-B paths in G.

Let H be a sub(multi)graph of G. An H-path is a nontrivial path which meets H
exactly in its ends, say, a nontrivial path not meeting H except that its ends meet H.

Theorem 3.4. Let G be a finite graph, and A,B be sets of vertices of G, then

(32) κ(G,A,B) = κ∗(G,A,B), λ(G,A,B) = λ∗(G,A,B).

Here, for the first equality, A and B may have an intersection, while for the second
equality, suppose A ∩B = ∅.
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X

A B

Figure 9

Proof. (The first equality) If s disjoint A-B paths exist, then we can not choose less
than s vertices which separate A from B. Hence we have

(33) κ(G,A,B) ≥ κ∗(G,A,B).

Therefore we prove the equivalent propositions: the first equality of (32) ((32)-1, for
short), or (*): for a given graph G, if κ(G,A,B) = s, then there exist s disjoint A-B
paths in G, by induction on the partial order over graphs defined by (1). If G is an
independent set, then (32)-1 holds. Let G be a graph and suppose (32)-1 holds for
every graph less than G. Let κ(G,A,B) = s and X be an s-separating set between A
and B.

(i) First of all, we consider the case A ∩ B 6= ∅. Let c ∈ A ∩ B, then c is an A-B
path, and thus c ∈ X . Hence κ(G,A,B) = κ(G− c, A− c, B− c)+1. By the induction
hypothesis, κ(G− c, A− c, B − c) = κ∗(G− c, A− c, B − c) = s− 1. Hence we have s
disjoint A-B paths in G.

(ii) Next, we consider the case A ∩B = ∅. Further we suppose that X 6= A,B. By
the minimality of X , A − X,B − X 6= ∅. Let b ∈ B −X . We have κ(G,A,X) = s,
because |X | = s implies κ(G,A,X) ≤ s, and if κ(G,A,X) = s′ < s, then as every A-B
path meets X , κ(G,A,B) ≤ s′, contradiction.

If A∩X 6= ∅, then this case is reduced to (i), and we have κ(G,A,X) = κ∗(G,A,X)
= s. Hence we suppose that A ∩ X = ∅. Noting that no proper A-X path passes
through b, κ(G − b, A,X) = κ(G,A,X) = s. By the induction hypothesis, κ(G −
b, A,X) = κ∗(G − b, A,X) = s, and therefore, using (33) with B replaced by X ,
κ∗(G,A,X) = s. In a similar manner, we have κ∗(G,X,B) = s.

In this stage, we have s disjoint proper A-X paths and s disjoint proper X-B paths,
but moreover, all of them are disjoint except vertices X , because if not, we have an
A-B path not meeting X . Now just connecting them, we have s disjoint A-B paths as
desired (Figure 9).

(iii) Lastly, we suppose that A ∩ B = ∅, and X = A or B. We may assume
that a proper A-B path w exists. (Otherwise, A is already separated from B and
κ(G,A,B) = 0 = κ∗(G,A,B).) Take any edge e = xy in w, where x and y appear in
w in this order, then we have x /∈ B and y /∈ A. If κ(G − e, A,B) = s, then by the
induction hypothesis, κ∗(G,A,B) ≥ κ∗(G − e, A,B) = s, and thus (*) holds for G. If
κ(G − e, A,B) = s − 1 ≥ 1 and X ′ is an (s − 1)-separating set between A and B in
G− e, then we can get an s-separating set X = X ′ ∪ {x} or X ′ ∪ {y} between A and
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B in G, which is not equal to A nor B; this case is reduced to the previous case (ii).
The case s− 1 = 0 is trivial. The case κ(G− e, A,B) ≤ s− 2 is clearly impossible. �

H3

H1 H2

A B

FX Y

H’1 H’2

Figure 10

Proof. (The second equality) If s edge-disjoint A-B paths exist, then we can not choose
less than s edges which disconnect A from B. Thus we have λ(G,A,B) ≥ λ∗(G,A,B).
Hence, like the first proof, we show the equivalent propositions: the second equality
of (32) ((32)-2, for short), or (*): for a graph G, if λ(G,A,B) = s, then there exist s
edge-disjoint A-B paths in G, by induction on the partial order over graphs. If G is
an independent set, then (32)-2 holds. Let G be a graph and suppose (32)-2 holds for
every graph less than G. Let λ(G,A,B) = s and F be an s-disconnecting set between
A and B.

Consider the components of G−F , and let H1 (respectively, H2) be the union of all
components containing some elements of A (respectively, B). Let H3 be the union of
all components containing no elements of A∪B. By the minimality of F , every edge in
F connects some vertex of H1 and some vertex of H2. Let V

′ be the set of end vertices
of all edges in F , and define X = V ′ ∩V (H1) and Y = V ′ ∩V (H2). Let H

′
1 and H ′

2 be
the graphs made by adding all edges in F to H1 and H2, respectively (Figure 10). If
λ(H ′

1, A, Y ) < s or λ(H ′
2, X,B) < s, then λ(G,A,B) < s, contradiction. Hence, noting

the s-disconnecting set F , we have λ(H ′
1, A, Y ) = λ(H ′

2, X,B) = s.
Suppose H ′

1, H
′
2 < G. By the induction hypothesis, we have s edge-disjoint A-Y

paths in H ′
1 and s edge-disjoint X-B paths in H ′

2. Connecting these paths putting F
between them, we have s edge-disjoint A-B paths in G.

Suppose H ′
1 = G or H ′

2 = G. By the minimality of F , we have H ′
1 = G ⇒ B = Y

and H ′
2 = G ⇒ A = X . Thus we suppose A = X or B = Y . If the maximum length

of a proper A-B path ≤ 2, then G’s structure is very restricted and we can confirm
(*) holds for G (Figure 11). If the maximum length of a proper A-B path ≥ 3, then
there exists an edge e = xy such that x, y /∈ A ∪B. If λ(G− e, A,B) = s, then by the
induction hypothesis, λ∗(G,A,B) ≥ λ∗(G− e, A,B) = s, and (*) holds for G.
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If λ(G − e, A,B) = s − 1 and F ′ is an (s − 1)-disconnecting set between A and B
in G− e, then F = F ′ ∪ {e} is an s-disconnecting set between A and B in G, and this
case is reduced to the case that A 6= X and B 6= Y , say, H ′

1, H
′
2 < G. �

F and A-B paths

A B

Figure 11

Theorem 3.4 holds also for finite multigraphs G; the proofs are valid for this case
without correction. The second equality of (32) gives an essentially extended result
for the multigraph case. The first equality, however, has no deeper meaning for the
multigraph case, because multi-edges or loops make no difference for both sides of the
equality.

Proof of Theorem 3.3. The second equality is a special case of the second one of
Theorem 3.4. The first equality is shown as follows. Let G be a finite graph and u, v
be distinct nonadjacent vertices of G. Let A and B be the sets of all neighbors of u
and v, respectively, that is, A = V (N(u)), B = V (N(v)). By Theorem 3.4, we have
κ(u, v) = κ(G,A,B) = κ∗(G,A,B) = κ′(u, v). �

Theorem 3.5. (The global version of Menger’s theorem) Let G be a connected multi-
graph. Let k be a positive integer. For (i), suppose that G is neither Kn nor any
supermultigraph of Kn on n vertices, for any n. For (ii), suppose that G has at least
two vertices.
(i) G is k-connected if and only if it has k independent paths between any two distinct
nonadjacent vertices.
(ii) G is k-edge-connected if and only if it has k edge-disjoint paths between any two
distinct vertices.

Proof. (i) Let G be k-connected. Let u, v be arbitrary distinct nonadjacent vertices
of G. Let X 6∋ u, v be a minimum separating set between u and v. Then X is a cut
set of G and so |X | ≥ k. Hence κ′(u, v) = κ(u, v) ≥ k, and therefore k independent
(u, v)-paths exist.

Conversely, suppose that G has k independent paths between any two distinct non-
adjacent vertices. Let X be an arbitrary cut set of G. Let u and v be vertices of
distinct components of G−X . Then u and v are clearly distinct, nonadjacent and X
is a separating set between them. Hence |X | ≥ κ(u, v) = κ′(u, v) ≥ k, say, |X | ≥ k,
and therefore G is k-connected. �

Proof. (ii) is proved in a similar manner to the proof of (i). �
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X

C

H

JF
G

Figure 12

(exercise) Find minimum cut sets and minimum disconnecting sets of several (multi)
graphs.

(exercise) For some Lm,n and some vertex sets A,B, find the following: (1) A
minimum separating set between A and B. (2) A maximum set of disjoint A-B paths.
(3) A minimum disconnecting set between A and B. (4) A maximum set of edge-
disjoint A-B paths.

3.3 Mader’s theorem

In this section, we introduce a deep result of Mader without a proof. Let G be
a finite graph and H be an induced subgraph of G. Mader’s theorem describes the
maximum number of independent H-paths in G. On the analogy of Menger’s theorem,
we consider a kind of obstacles for H-paths. Choose a vertex set X ⊂ V (G−H) and
an edge set F ⊂ E(G−H) not contained in H, such that every H-path meets X or F .
For such X and F , the number of independent H-paths is at most |X ∪ F |. For our
purpose, we may omit all edges in F incident to some vertex in X , because a path with
such an edge always meets X . Further, since H is an induced subgraph, the length of
an H-path should be greater than 1. Hence we can choose X , Y = V (G−H)−X and
a graph JF = (Y, F ) (≤ G[Y ]), such that every H-path meets X or F .

Now for a component C of JF , let ∂C denote the set of all vertices of C adjacent to
some vertex of G−C −X . An H-path avoiding X should meet F , and so at least two
vertices in ∂C for some C. Thus, the quantity:

(34) mG(H) = min



|X |+
∑

C: components of JF

[
1
2 |∂C|

]





is an upper bound of the number of independent H-paths, where the minimum is taken
over all X and F described above.

Then Mader’s theorem says:

Theorem 3.6. (W. Mader, 1978) Let G be a finite graph and H be an induced
subgraph of G. The maximum number of independent H-paths in G is mG(H).
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4 Trees 4.1 basics

Trees, connected acyclic graphs, form an important class of graphs. A (nontrivial)
tree is 1-(edge-)connected, that connects the vertices with least edges. The number of
trees of order n up to isomorphism, denoted by t(n), increases rapidly and the first few
values are

(35) 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159.

However, no exact formula for t(n) is known.
In this chapter, we study mainly about spanning trees from several viewpoints,

starting with several basic properties of trees.

Lemma 4.1. Let T be a tree with p vertices and q edges, then p = q + 1.

Proof. By induction on p. For p = 1, it is valid. Suppose it is valid for p − 1. Let T
be a tree with p vertices and q edges. Consider a longest path u −→ v in T . Then
deg(u) = deg(v) = 1, because if not, we have a longer path or a cycle. Hence T − v
is a tree with p − 1 vertices and q − 1 edges. By the induction hypothesis, we have
p− 1 = q − 1 + 1. �

Theorem 1.4. Let G be a graph with p vertices and q edges, then the following
conditions are equivalent: (i) G is a tree. (ii) G is connected and p = q + 1. (iii) G is
acyclic and p = q + 1. (iv) For any vertices u, v of G, there exists a unique path from
u to v.

Proof. (i) ⇐⇒ (ii) : By Lemma 4.1, (i) ⇒ (ii) is clear. We prove (i) ⇐ (ii). Let
G be a connected graph with p vertices and q edges such that p = q + 1. If G has a
cycle, we can remove an edge on the cycle to have a connected graph G′. Repeating
this process, we have a connected acyclic graph G(s), tree. Then p = q − s + 1. ∴

s = 0. �

(i) ⇐⇒ (iii) : It suffices to prove (i) ⇐ (iii). Let G be an acyclic graph such that
p = q+ 1. Every component Gi of G is a tree, say pi = qi +1. Hence p = q+ s, where
s is the number of components, and therefore s = 1. Hence G is a tree. �

(i) ⇒ (iv) : Let G be a tree. Let u, v be arbitrary vertices of G. As G is connected,
G has a (u, v)-path. We derive a contradiction from the assumption that there exist
distinct two (u, v)-paths w and w′ in G. Suppose w and w′ share a common path from
u to u0, and the next vertices in w and w′ are x and x′ (x 6= x′), respectively. Let y
be the first vertex after x in w, such that y is also in w′. (y appears after x′ also in
w′.) Then we have a cycle u0x −→ y −→ x′u0, which is a contradiction. �

(i) ⇐ (iv) Suppose (iv) is satisfied. Then G is connected. If G has a cycle C, then
an edge e = xy on C is not a bridge, and thus there exists an (x, y)-path in G − e.
Hence we have two distinct (x, y)-paths in G, a contradiction. Thus G is acyclic, and
therefore G is a tree. �
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(exercise) Prove a tree is 2-colorable, equivalently bipartite.
(exercise) Let G be a forest consisting of s components. Determine p− q.

u
u0

v

x

x’

y

w

w’

Figure 13

4.2 spanning trees and Kirchhoff’s theorem

Let G be a multigraph. A spanning tree of G is a tree which is a spanning subgraph
of G. In other words, a spanning tree of G is a tree formed by removing several
edges from G. Obviously, if G is disconnected, then G has no spanning trees. If G is
connected, then we can remove an edge on some cycle of G to get connected G′, and
repeating this process, we have a spanning tree of G. It is important to enumerate the
number t(G) of spanning trees of a connected multigraph G, and Kirchhoff’s theorem
(Kirchhoff’s matrix tree theorem) is a surprising result that combines t(G) with a
determinant:

Theorem 4.1. (Kirchhoff’s theorem) Let G be a multigraph without loops. Then t(G)
is equal to the (i, j) cofactor of the Laplacian matrix of G for every i, j.

To prove this, we need several theorems and lemmas.

Theorem 4.2. (Cauchy–Binet formula) Let m ≤ n be positive integers. Let A be an
m× n matrix and B an n×m matrix, then

(36) det(AB) =
∑

S

det (AS) det
(
BS

)
,

where S runs over all m-element subsets of [n] = {1, 2, . . . , n}, and for S = {j1, . . . ,
jm}, write AS for the m×m matrix consisting of the j1, . . . , jm-th columns of A, and
BS for the m×m matrix consisting of the j1, . . . , jm-th rows of B.
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Proof. Let A = (a1, . . . , an) and B = (bij). By multilinearity of determinants, we have
(37)

det(AB) = det
(
∑n

j=1 bj1aj . . .
∑n

j=1 bjmaj

)

=
∑

{j1,...,jm}⊂[n]

bj1,1 . . . bjm,m det (aj1 . . .ajm)

=
∑

1≤i1<···<im≤n

∑

∗
sgn

(
i1 . . . im
j1 . . . jm

)

bj1,1 . . . bjm,m det (ai1 . . .aim)

=
∑

S⊂[n]

det
(
BS

)
det (AS) .

Here, the summation ∗ runs over all permutations j1, . . . , jm of i1, . . . , im. �

Let G be a multigraph on p vertices, with q edges without loops. The oriented
incidence matrix M of G is given by changing the sign of the second nonzero entry
in each column of the ordinary incidence matrix. For example, the oriented incidence
matrix of K5 is shown below.

(38)













1 0 0 0 1 1 0 0 1 0

−1 1 0 0 0 0 1 0 0 1

0 −1 1 0 0 −1 0 1 0 0
0 0 −1 1 0 0 −1 0 −1 0

0 0 0 −1 −1 0 0 −1 0 −1













Let L be the Laplacian matrix of G and Lij be the submatrix obtained by deleting
the i-th row and the j-th column of L. Let F be the submatrix obtained by deleting
the i-th row of M . Then we have

(39) L = M tM, Lii = F tF.

By the Cauchy–Binet formula,

(40) detLii = det
(
F tF

)
=

∑

S

det (FS) det
(
tFS

)
=

∑

S

(detFS)
2
,

where S runs over all (p− 1)-element subsets of [q].

Lemma 4.2. Let G be a multigraph on p vertices with q = p− 1 edges without loops.
Let F be a matrix obtained by removing a row from the oriented incidence matrix of
G. Then detF = ±1 if and only if G is a tree, and detF = 0 if and only if G is not
a tree.

Proof. If G has a cycle, then one can see that detF = 0. Otherwise G is a forest, and
by q = p− 1, G is a tree. We can prove detF = ±1 if G is a tree, by induction on the
number of vertices, but we omit the details. �
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Proof of Theorem 4.1. By Lemma 4.2, in (40), if the edges corresponding to S form

a spanning tree, then (detFS)
2
= 1, otherwise detFS = 0. Hence the determinant of

Lii counts exactly the number of spanning trees.
The next thing to prove is that, for the cofactors l̃ij = (−1)i+j detLij of L, they

have the same value for all i, j. If G is disconnected, it is clear that detLij = 0 by the
expansion of detLij which is similar to (40). Thus we suppose that G is connected.
On the one hand, L is singular because

(41) Lx0 = M tMx0 = M0 = 0

for x0 = t(1, . . . , 1). On the other hand, as G is connected, M includes a nonsingular
(p− 1) × (p− 1) submatrix, and therefore the rank of the p× p matrix L = M tM is
p− 1. Hence the equation

(42) Lx = 0

has a 1-dimensional solution space span{x0}. For the adjugate matrix adjL = t
(

l̃ij

)

of L, we have

(43) L adjL = (detL)Ep = O.

Therefore adjL = (k1x0 . . . kpx0), but as adjL is symmetric, we have adjL =
k (x0 . . . x0). �

v1

v2 v3

v4

Figure 14

For example, let G be a graph depicted above, then the Laplacian matrix of G is

(44) L =







3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2







,

and t(G) can be calculated by cofactors as follows.

(45) |L11| =

∣
∣
∣
∣
∣
∣

2 −1 0
−1 3 −1
0 −1 2

∣
∣
∣
∣
∣
∣

= 8; (−1)3+4|L34| = −

∣
∣
∣
∣
∣
∣

3 −1 −1
−1 2 −1
−1 0 −1

∣
∣
∣
∣
∣
∣

= 8.

For easy graphs such as G = Cn, we see t(Cn) = n immediately. For several
special graphs G, we can derive simple formulas for t(G) from Kirchhoff’s theorem.
Let n = p1 + · · ·+ ps. We have the following.
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Theorem 4.3.

(46)

t(Kn) = nn−2 (Cayley’s formula), t(Km,n) = mn−1nm−1,

t(Kp1,...,ps
) = ns−2

∏s

i=1(n− pi)
pi−1 (T. L. Austin, 1960),

t(Wn) =
(

3+
√
5

2

)n−1

+
(

3−
√
5

2

)n−1

− 2.

Proof. (The first equality) By Kirchhoff’s theorem,
(47)

t(Kn) = |L11| =

∣

∣

∣

∣

∣

∣

∣

∣

n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 −1 . . . −1 n− 1

∣

∣

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸

n−1

=

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 −1 . . . −1
1 n− 1 −1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 −1 . . . −1 n− 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 . . . 0
1 n 0 . . . 0

. . . . . . . . . . . . . . . . . . . .
1 0 . . . 0 n

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

n 0 . . . 0
0 n . . . 0

. . . . . . . . . . . . . . . .
0 . . . 0 n

∣

∣

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸

n−2

= nn−2.

Proof. (The second equality) The Laplacian matrix of Km,n is

(
nEm −1mn

−1nm mEn

)

,

where 1mn denotes an m× n matrix consisting of only 1’s. By Kirchhoff’s theorem,

(48)
t(Km,n) =

∣
∣
∣
∣
∣

nEm−1 −1m−1,n

−1n,m−1 mEn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

nEm−1 −1m−1,n

O mEn − m−1
n

1nn

∣
∣
∣
∣
∣

= nm−1
∣
∣mEn − m−1

n
1nn

∣
∣ .

Here, as in the proof of the first equality,
(49)

|(p+ q)En − q1nn| =

∣
∣
∣
∣
∣
∣
∣
∣

p −q . . . −q
−q p . . . −q
. . . . . . . . . . . . . . . . . .
−q −q . . . p

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

p− (n− 1)q −q . . . −q
p− (n− 1)q p . . . −q
. . . . . . . . . . . . . . . . . . . . . . . . . . .
p− (n− 1)q −q . . . p

∣
∣
∣
∣
∣
∣
∣
∣

= [p− (n− 1)q]

∣
∣
∣
∣
∣
∣
∣
∣

1 −q . . . −q
1 p . . . −q
. . . . . . . . . . . . . . . .
1 −q . . . p

∣
∣
∣
∣
∣
∣
∣
∣

= (p+ q − nq)

∣
∣
∣
∣
∣
∣
∣
∣

1 0 . . . 0
1 p+ q . . . 0
. . . . . . . . . . . . . . . . . . . . .
1 0 . . . p+ q

∣
∣
∣
∣
∣
∣
∣
∣

= (p+ q − nq) (p+ q)n−1.

Hence we have

(50) t(Km,n) = nm−1

∣
∣
∣
∣
mEn −

m− 1

n
1nn

∣
∣
∣
∣
= nm−1mn−1.

The proofs of the third and fourth equalities are omitted.
(exercise) Calculate t(K2,2,2) and t(K3,2,1) by Kirchhoff’s theorem.
(exercise) Prove the fourth equality of (46).
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4.3 the deletion-contraction recurrence

Let G = (V,E) be a multigraph. An edge contraction of e = xy in G is an operation
which removes e from G while simultaneously merging x and y into a new vertex z,
where all edges incident to x or y are preserved to be incident to z. The multigraph
obtained by this operation is written as G/e. If e = xy is a multi-edge, then the edge
contraction of e makes several loops zz. An edge contraction of a loop e is simply a
deletion of e. Let te(G) be the number of spanning trees of G containing e.

Theorem 4.4. (The deletion-contraction recurrence) For a non-loop edge e, we have

(51) t(G) = t(G− e) + te(G) = t(G− e) + t(G/e).

Proof. The spanning trees of G are classified into ones which contain e and ones which
do not contain e. Hence we have t(G) = t(G − e) + te(G). There exists an edge
contraction bijection between the spanning trees of G containing e and the spanning
trees of G/e. Hence te(G) = t(G/e). �

For a set of edges F , denote by tF (G) the number of spanning trees of G which
contain all edges in F , and by G/F a multigraph obtained from G by edge contractions
of all edges in F . Using Theorem 4.4 repeatedly (or classifying spanning trees by which
edges of a subset E′ of edges are used), we have the following.

Theorem 4.5. (A general form of the deletion-contraction recurrence) For a subset
E′ ⊂ E of edges of G, it holds that

(52) t(G) =
∑

F⊂E′

tE′−F (G− F ) =
∑

F

t ((G− F )/(E′ − F )) ,

where the summation on the right-hand side runs over all subsets F of E′ such that
E′ − F includes no cycle.

(exercise) Enumerate the numbers of spanning trees of the graphs (7),(8) in Fig-
ure 16. (hint) For the graph (8), classify the spanning trees according to which edges
of e, f, g are used.

4.4 Prüfer’s bijective proof of Cayley’s formula

We have shown t(Kn) = nn−2 by Kirchhoff’s theorem. In this section we study a
bijection from the set T (Kn) of all spanning trees of Kn to the set An of all sequences
of positive integers ≤ n of length n− 2. If Kn is vertex-labeled with 1, 2, . . . , n, then a
spanning tree of Kn is naturally interpreted into a labeled tree with the labeled vertices
1, 2, . . . , n.

(i) We now encode a labeled tree T on the vertices 1, 2, . . . , n into a sequence be-
longing to An named the Prüfer sequence of T . Find the least leaf b1 of T , and see the
unique adjacent vertex a1. Then remove b1 and get a new tree T ′. Find the least leaf
b2 of T ′, and see the unique adjacent vertex a2. Then remove b2 and get a new tree
T ′′. Repeating this process, we have a sequence (a1, a2, . . . , an−2), which is the Prüfer
sequence of T .
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(ii) Next we decode a Prüfer sequence α = (a1, a2, . . . , an−2) into a labeled tree T .
For this purpose, we restore the order of leaf deletion β = (b1, b2, . . . , bn−2). By the
algorithm (i), a labeled tree T is transformed into a tree P2 on two vertices, removing
(n − 2) leaves step by step. Hence we see that no leaves appear in α because a leaf is
not adjacent to another leaf in a tree except for P2, and that every non leaf vertex of
degree d appears in α (d − 1) times. Therefore the vertices in {1, 2, . . . , n} which do
not appear in α are clearly all of the leaves of T . Thus we have the list of leaves (leaf
list, for short).

Step 1: Choose the least leaf b1 from the leaf list, which is to be removed by the
algorithm (i) at the first step, and remove this leaf from the leaf list. If a1 never
appears in (a2, . . . , an−2), then add a1 as a new leaf to the leaf list.

Step 2: Choose the least leaf b2 from the leaf list, which is to be removed by (i) at
the second step, and remove it from the leaf list. If a2 never appears in (a3, . . . , an−2),
then add a2 as a new leaf to the leaf list.

. . . . . . . . . . . . . . . . . . . . . . . . . . REPEATING THIS PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . .

Step (n − 2): Choose the least leaf bn−2 from the leaf list, which is to be removed
by (i) at the final step, and remove it from the leaf list. Add an−2 as a new leaf to the
leaf list.

Now we have the order of leaf deletion β = (b1, . . . , bn−2). Together with α, a labeled
tree T is reconstructed from a tree P2 on two vertices not appearing in β, which are
in the final leaf list.

These two mappings (i) and (ii) are the inverses of each other. Hence they are
bijections.

Proof of Cayley’s formula. By the above bijection, t(Kn) = |T (Kn)| = |An| =
nn−2. �

(exercise) What is the Prüfer sequence α of the labeled tree T in Figure 15? (ans):
(7, 4, 1, 1, 7, 4, 7). Reconstruct T from α.

9

7

2

4

3

8

1

5

6

Figure 15
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4.5 minimum spanning trees

A multigraph G is called edge-labeled if a weight (label) w(e) is given to each edge
e of G. Here, a weight is usually a real number. For an edge-labeled multigraph G
and its submultigraph H, the weight w(H) of H is the sum of all weights of the edges
of H. A minimum spanning tree is a spanning tree with the minimum weight. For
fixed s, a minimum spanning forest of s components is similarly defined, which is a
spanning forest of s components with the minimum weight. The following are two
famous algorithms to construct a minimum spanning tree of G. Suppose G has p
vertices.

(Prim’s algorithm) This makes one of the minimum spanning trees by developing a
tree step by step from a vertex of G. Choose an arbitrary vertex v = T1 of G. Take a
minimum(-weighted) (non-loop) edge e1 incident to v, and add it to v with e1’s another
end vertex, then we have T2. In general, if we have Tk on k vertices, take a minimum
edge ek connecting a vertex of Tk and a vertex not contained in Tk, and add ek with
the end vertex to Tk, then we have Tk+1. Repeating this process, we have a minimum
spanning tree Tp.

(Proof of correctness) Let T be a minimum spanning tree of G and T1, T2, . . . , Tp

be trees obtained by the above Prim’s algorithm. If T = Tp, then Tp is a minimum
spanning tree. Now suppose T 6= Tp. Let k be the least number such that Tk is not a
subgraph of T . Let e = xy be an edge of Tk not contained in T , where y is added to
Tk−1 with e to build Tk. Set V = V (Tk−1). Since T is a spanning tree, an (x, y)-path
in T exists, and in this path there exists an edge f = x′y′ such that x′ ∈ V and y′ /∈ V .
Then by Prim’s algorithm,

(53) w(e) ≤ w(f).

Hence in T , we can remove f and add e to make a new minimum spanning tree T ′.
Repeating this process, we have T (s) = Tp, which is a minimum spanning tree. �

(Kruskal’s algorithm) We develop a spanning forest starting from the vertex set V
of G into a minimum spanning tree of G. First we have a forest with no edges V = F0.
Next add a minimum edge e1 to V and we have F1. If we have Fk−1, add a minimum
edge ek to Fk−1 to make Fk, such that ek does not give any cycle in Fk. Repeating
this process, we have a minimum spanning tree Fp−1.

(Proof of correctness) Let T be a minimum spanning tree and F0, F1, . . . , Fp−1 be
forests obtained by Kruskal’s algorithm. If T = Fp−1, then Fp−1 is a minimum spanning
tree, thus suppose T 6= Fp−1. Let k be a least number such that Fk is not a subgraph
of T , and e be an edge of Fk not contained in T , say, e is an edge added to Fk−1 to
make Fk. Here, T ∪ {e} has a cycle C. As Fk does not contain the whole of C, there
exists an edge f on C which is not contained in Fk but contained in T . Since Fk−1

is a subgraph of T , addition of either e or f keeps Fk−1 to be a forest, and therefore,
by Kruskal’s algorithm, we have (53). Then removing f and adding e to T , we have a
minimum spanning tree T ′. Repeating this process, we have T (s) = Fp−1, which is a
minimum spanning tree. �
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For fixed s, Kruskal’s algorithm gives a minimum spanning forest of s components.
In the above algorithm, Fp−s is simply a minimum spanning forest of s components.
One can show this fact by a similar method to the above proof.

(exercise) Find minimum spanning trees of the graphs (3)–(6) in Figure 16.
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5 Decompositions of graphs

5.1 definition and examples

Let G be a multigraph. A set of nonempty submultigraphs {G1, . . . , Gs} is called a
decomposition of G, or G is said to be decomposed into G1, . . . , Gs, if the set of the
edge sets of G1, . . . , Gs is a partition of the edge set of G, say,

(54)
E(G) = E(G1) ∪ · · · ∪ E(Gs) and
E(Gi) ∩ E(Gj) = ∅ for all i 6= j.

Then it is also said that G1, . . . , Gs are packed (have a packing) into G. Usually, we
suppose E(G) 6= ∅, and E(Gi) 6= ∅ for all i. In general, for multigraphs G′

1, . . . , G
′
s

such that Gi ≃ G′
i for all i, it is said that they are packed into G. The term “pack” is

also used for any supermultigraph G′ of G, say, it is said that G′
1, . . . , G

′
s are packed

(have a packing) into G′.
For a multigraph H, an H-decomposition of G is a decomposition into multigraphs

each of which is isomorphic to H. A decomposition into k-factors is called a k-
factorization, and G is k-factorable if it has a k-factorization. For example, K5 has
clearly a C5-decomposition.

Theorem 5.1. Let G be a connected graph with an even number of edges, then G has
a P3-decomposition.

Proof. Let G be as in the theorem. Select as many edge-disjoint copies of P3 as possible
from G. If all edges are used, a P3-decomposition is completed, otherwise we have an
even number of single edges left over in G. Since G is connected, there exists a path
between any two distinct single edges. Choose two distinct single edges e1 and e2,
and let w be a shortest path between them. The first edge of w is not a single edge,
and so this forms P3 with another edge. The location of this P3 has three possibilities
(Figure 17), and changing the location of e1 and P3, the resulting distance between e1
and e2 is shorter than before. In this way, we can get e1 and e2 adjacent, which make
a new P3. Repeating this process, we have a P3-decomposition. �

P3

e1 e2

P3

e1 e2

P3

e1 e2

P3

e1

e2

P3
e1 e2P3

e1 e2

Figure 17
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(exercise) When m+ n is even, find a P3-decomposition of Lm,n.
(exercise) Is this true? A connected graph with a multiple of 3 edges is always

decomposed into connected graphs with 3 edges.

5.2 decompositions of complete graphs

There are many problems concerning decompositions of graphs, especially, decom-
positions into fixed graphs. It is often discussed whether or not a decomposition into
Hamiltonian cycles or trees is possible. One can observe easily that Kn is decomposed
into Hamiltonian cycles for small odd numbers n, and this is true for all odd numbers.
A tree decomposition of Kn (tree packing into Kn) is a very famous problem; a decom-
position of Kn into a specified family of n trees on 1, 2, . . . , n vertices, or equivalently,
a packing of such a family of trees into Kn.

Theorem 5.2. (É. Lucas, 1892) (i) The complete graph K2n+1 is decomposed into n
Hamiltonian cycles. (ii) The complete graph K2n is decomposed into (n − 1) Hamil-
tonian cycles and a 1-factor.

Proof. (i) Consider a regular 2n-gon with a center vertex, which locates below the 2n-
gon, say, a regular 2n-gon pyramid, and take a Hamiltonian cycle on it as in the left
graph in Figure 18. Here, note that the horizontal edge does not pass through the center
vertex while the vertical edges are incident to it. Now rotate this cycle by π/n, then
we have a new Hamiltonian cycle, which does not share any edges with the previous
Hamiltonian cycle. Rotating the cycle (n−1) times, we have n Hamiltonian cycles and
have used all edges of K2n+1. A Hamiltonian cycle decomposition is completed. �

Figure 18

(ii) By the similar method to (i). Consider a regular (2n−1)-gon with a center vertex.
(Not necessary to avoid the same plane because no diagonal passes through the center.)
A Hamiltonian cycle is shown in the right graph in Figure 18. This is composed of two
1-factors. K2n is decomposed into (2n− 1) 1-factors, but adjacent two 1-factors form
a Hamiltonian cycle. Hence K2n is decomposed into (n− 1) Hamiltonian cycles and a
1-factor. �



GRAPH THEORY 37

The following is known as the Gyárfás tree packing conjecture:

Conjecture 5.1. (A. Gyárfás) An arbitrary sequence of trees T1, T2, . . . , Tn, where Ti

has i vertices, has a packing into Kn.

This is an open difficult problem, however, several special cases are solved.

Theorem 5.3. (A. Gyárfás, J. Lehel, 1976) (i) The trees T1, . . . , Tn can be packed
into Kn if all but two are stars. (ii) The trees T1, . . . , Tn can be packed into Kn if there
is no Ti which is different from a path or a star.

Proof. (i) By induction on n. For n = 1, the proposition is true. Suppose that it is
true for n− 1.

(1) If Tn is a star Sn, then Tn and Kn−1 are packed into Kn. Hence in this case,
the proposition holds.

(2) If Tn−1 is a star Sn−1, then take a leaf x of Tn, where x is incident to e = xy. Let
Tn − x = T ′

n−1. By the induction hypothesis, T1, . . . , T
′
n−1 can be packed into Kn−1.

We can add Sn−1 and e to Kn−1 to make Kn reconstructing Tn by adding e to T ′
n−1

on the vertex y.
(3) Suppose neither Tn nor Tn−1 is a star. Then Tn has a vertex x of degree k ≥ 2

such that x is adjacent to k−1 leaves and a non-leaf vertex y. The closed neighborhood
of x, N = NTn

[x] is isomorphic to Sk+1. Let H = N − y and Tn −H = T ′
n−k. By the

induction hypothesis, T1, . . . , T
′
n−k, . . . , Tn−1 can be packed into Kn−1. We can add N

and Tn−k = Sn−k to Kn−1 to make Kn reconstructing Tn by adding N to T ′
n−k on the

vertex y. �

The proof of (ii) is omitted.

x
yN

k = 3

Tn

T’n−3

Figure 19

A lot of partial solutions to Conjecture 5.1 have been found. In addition, Conjec-
ture 5.1 is generalized to the one where Kn is replaced by an n-chromatic graph. The
following are the generalized conjecture and one of the recent results concerning this
conjecture.
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Conjecture 5.2. (D. Gerbner, B. Keszegh, C. Palmer 2012) For 2 ≤ i ≤ n, let Ti be
a tree on i vertices. If G is an n-chromatic graph, then the set of trees T2, . . . , Tn has
a packing into G.

Theorem 5.4. (D. Gerbner, B. Keszegh, C. Palmer 2012) If G is an n-chromatic
graph and there are at most 3 non-stars among the trees T2, ..., Tn, then they can be
packed into G.

(exercise) For several n, choose trees T1, . . . , Tn and find a packing of them into Kn.
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