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- 1.1 -

In this section, we define several notions about graphs. We define the following:

graph, vertex set, edge set, connect (join), edgeless, independent set,
end vertices, finite or infinite graph

multigraph, multi-edges, loop, multi-loops
multiset

multiplicity, order, size, finite or infinite multigraph
adjacent, incident, neighbor, independent vertices (edges)

Hereafter, we show table of new terms as above in every section. Questions con-
cerning this section follow.

Question (Weekly report): What is the difference between graphs and multigraphs?

Question (Weekly report): Write the vertex set V and the edge set E of the center
top graph in Figure 1.

- 1.2 -

We define sub(multi)graphs of a (multi)graph G, which is a graph made of sev-
eral vertices and edges of G. If G′ is a sub(multi)graph of G, then G is called a
super(multi)graph of G′.

subgraph, submultigraph, supergraph, supermultigraph, proper
spanning subgraph, factor, induced subgraph
partial order over the set of all subgraphs

G− V ′, G−E′, G−H

the open or closed neighborhood of a vertex

Question (Weekly report): How many spanning subgraphs of the center graph in
Figure 1?

1
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- 1.3 -

In this section, we define an important notion isomorphism of graphs. If there exists
an isomorphism from G to G′, then G and G′ are said to be isomorphic, denoted by
G ≃ G′. Automorphism is also defined.

isomorphism, isomorphic graphs, automorphism

Question (Final report): Find isomorphism from the right graph in the Figure 2 to
the graph below. You may assign the name of vertices by yourself.

- 1.4 -

The degree of a vertex is the number of edges incident to the vertex, where loops
are counted twice. Theorem 1.1 (the handshaking lemma) says that the sum of degrees
of all vertices is equal to the twice of the number of edges.

even or odd vertex, isolated vertex, leaf, pendant, ∆(G), δ(G)
trivial (singleton) graph, k-regular, cubic (trivalent), k-factor

degree sequence, graphic(al) sequence

Theorem 1.2 says a necessary and sufficient condition for a weakly decreasing se-
quence to be graphic:

A weakly decreasing sequence d1, d2, . . . , dn is graphic ⇐⇒ d2 − 1, . . . , dd1+1 −
1, dd1+2, . . . , dn is graphic.

A proof is given below of the theorem in the text. Let G be a graph with a degree
sequence d1, d2, . . . , dn, and H be a graph with a degree sequence d2 − 1, . . . , dd1+1 −
1, dd1+2, . . . , dn. For the proof of ⇐=, it suffices to construct G from H, and it is easy
to add a vertex to H, and connect it to vertices of degrees d2−1, . . . , dd1+1−1 to have
G.

The proof of =⇒ is difficult, because the inverse of the above operation (adding
vertex and edges) is not possible in general, the detailed method is given in the proof.
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Question (Weekly report): exercises 1,3,4, page 5. For exercise 4, you can select one
question from (1)–(5). Most of the questions of exercise 4 require Theorem 1.2.

Question (Final report): Find all non-isomorphic graphs with the degree sequence
2,2,2,2,2,2,2,2,2,2,2,2 (12 2’s).

Question (Final report): exercise 5, page 5.
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# 2

1 GRAPHS (continued)

- 1.5 -

In this section, we define and study walks and its families in multigraphs. A walk
w in a multigraph G is an alternating sequence of vertices and edges, represented as
(7), that is,

w = v0e1v1e2v2 . . . vn−1envn,

where ei connects vi−1 and vi for every i = 1, . . . , n.

The length of w is defined to be n, the initial and terminal vertices (end vertices)
of w are defined to be v0 and vn, respectively. The other vertices v1, v2, . . . , vn−1 of w
are called inner vertices of w. Also, we define the terms “passes” and “meets” in the
text.

If v0 = vn, w is called closed, otherwise w is called open.

In general, a walk can pass vertices and edges repeatedly, but if we add several
additional conditions, we have several classes of walks: trails, paths, circuits, and
cycles, which are defined by the table on page 6. The inclusion relation between them
is represented by Figure 3.

The following are examples of walks, trails, paths, circuits, and cycles.

A path can be only a single vertex of length 0, a path from a vertex to itself, which
is called a trivial path. The minimum length of cycles is 3 in a graph, but 1 or 2-cycles
can exist in a multigraph. A walk can be represented as a sequence of vertices omitting
edges if confusion does not occur. There are several additional definitions. Summary
of new terms in this section follows.
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walk of length n from u to v (between u and v), connected by w,
initial or terminal vertex, end vertices, inner vertices, pass, w meets H,

closed or open walk
trail, path, circuit, cycle, n-cycle Cn, even or odd cycle, Pn

trivial path, (u, v)-walk (trail, path) u −→ v

spanning (walks, circuits, subgraphs)
acyclic, unicyclic, pancyclic, girth, circumference

spanning cycle, Hamiltonian cycle, spanning path, Hamiltonian path,
Hamiltonian graph, traceable, Hamiltonian connected graph

Eulerian trail, Eulerian circuit, traversable, Eulerian (multi)graph
(vertex-)independent (internally vertex-disjoint) paths,
edge-independent (edge-disjoint) paths, κ′(u, v), λ′(u, v)

Theorem 1.3 says that if a walk u −→ v exists, then we have a path u −→ v. Also,
it says that if a circuit passing an edge e exists, then we have a cycle passing e.

This is intuitively clear, because, for the former case, we have a path from a walk
by taking a shortcut. The latter case is very similar.

- 1.6 -

We introduce several graphs which are very familiar in graph theory. Note that they
are graphs, with no multi-edges or (multi-)loops.

complete graph Kn, complete s-partite graph Kp1,...,ps
, s-partite graph

cycle (circular) graph Cn, path graph Pn, wheel graph Wn

tree, trivial tree, n-star Sn

Let G be a graph with p vertices and q edges. Theorem 1.4 gives several conditions
(ii)–(iv) equivalent to (i) G is a tree, that is, (ii) G is connected and p = q + 1, (iii)
G is acyclic and p = q + 1, (iv) For any vertices u, v of G, there exists a unique path
from u to v.

Question (Final report): exercises 1-3, page 9. For exercise 3, find trees on 8 vertices,
only.

Hint: When you find all trees on specified number of vertices, it is convenient to
classify trees by their diameters. Trees on n vertices of diameter k−1 can be composed
by writing Pk straightly, and adding branches of n− k vertices to inner vertices of Pk.
Be careful to exclude isomorphic trees and not to exceed the specified diameter.
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In this section we study connectivity of (multi)graphs. If a (multi)graph G has a
path between every (distinct) pair of vertices, then G is called connected. A maximal
connected sub(multi)graph of G is called a (connected) component of G. Hence, a
(multi)graph is connected if and only if it has only one component. The left graph in
Figure 4 has three components: two rectangles and one cross.

Next we define several notions for a connected multigraph G:

name definition
cut vertex removal of this vertex disconnects G

cut set/vertex cut/separating set removal of this vertex set disconnects G
bridge removal of this edge disconnects G

disconnecting set removal of this edge set disconnects G

edge cut with respect to S, V − S
set of all edges connecting some vertex in S

and some vertex in V − S

Furthermore, generalized connectivity is defined, which is fairly complicated:

k(-vertex)-connected removal of any k − 1 vertices keeps connected

(vertex) connectivity κ(G)
the size of minimum cut set of G or

the greatest k such that G is k-connected
k-edge-connected removal of any k − 1 edges keeps connected

edge-connectivity λ(G)
the size of minimum disconnecting set of G or
the greatest k such that G is k-edge-connected

Theorem 1.5 is a simple theorem concerning bridge, and is perhaps easier than the
above definitions:

e is on a cycle ⇐⇒ e is not a bridge

Question (Weekly report): exercises 1-2, page 10.
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# 3

1 GRAPHS (continued)

- 1.8 -

Here we introduce distance and related topics. The distance between two vertices is
defined to be the length of shortest path between them. The distance between u and
v is denoted by d(u, v). Then we have the axioms of distance (11).

eccentricity e(v)
maximum distance between v and

any other vertex

diameter of G = diam(G)
maximum distance between any two vertices or

maximum eccentricity over all vertices
radius of G = rad(G) minimum eccentricity over all vertices
peripheral vertices vertices of maximum eccentricity

center vertices of minimum eccentricity

Strange to say, the radius is not defined to be the half of the diameter. By (12), we
have

diam(G) ≤ 2rad(G).

The Wiener index or polynomial of G is defined. The Wiener polynomial of G is
defined by (13), say,

W (G; q) =
∑

{u,v}

qd(u,v),

where the sum runs over all unordered pairs of distinct vertices. Note that q is a
variable. For example, if V = {a, b, c, d}, we have

W (G, q) = qd(a,b) + qd(a,c) + qd(a,d) + qd(b,c) + qd(b,d) + qd(c,d).

Question (Weekly report): exercises 2-3, page 11.

Question (Final report): exercise 4, page 11.

- 1.9 -

In this section, we define graph coloring and graph labeling. For a graph G, a
(vertex) coloring of G is an assignment of colors to the vertices so that adjacent vertices
have distinct colors. Several relevant terms are defined, including the chromatic number
χ(G) of G.

Also, an edge coloring is defined to be an assignment of colors to the edges so that
adjacent edges have distinct colors. Several relevant terms are defined, including the
chromatic index (edge chromatic number) χ′(G) of G.
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An assignment of labels to the vertices (without any restrictions) is called a vertex
labeling. Similarly, an assignment of labels to the edges is called an edge labeling.

graph coloring, (vertex) coloring, k-coloring, k-colorable,
chromatic number χ(G), k-chromatic graph

color class, k-critical, critical
edge coloring, k-edge-coloring, k-edge-colorable, chromatic index

(edge chromatic number) χ′(G), k-edge-chromatic graph
graph labeling, vertex labeling, edge labeling

Question (Weekly report): exercise 1, page 12. You can choose two graphs from
them.

Question (Weekly report): exercise 2, page 12.

- 1.10 -

In this section, we define 3 types of matrices for multigraphs, adjacency matrix,
incidence matrix, and Laplacian matrix. See the text for detailed definition. Examples
of those matrices are found on page 14, exercise 1.

Theorem 1.6 is a famous fact that for the adjacency matrix A of a multigraph G,
the (i, j) entry of An is the number of walks vi −→ vj of length n.

Theorem 1.7 is derived from this theorem, which determine connectivity of G by
matrix calculation of A.

Next, we consider the characteristic polynomial and the eigenvalues of A, the ad-
jacency matrix of G. The adjacency matrix, like other two matrices, depends on the
ordering of the vertices of G.

However, the characteristic polynomial ΦA(t) = |tE−A| of A is uniquely determined
irrespective of the order of the vertices. Hence it is determined completely by G itself,
and is called the characteristic polynomial of G, denoted by ΦG(t), and its roots are
called the eigenvalues of G.

Since A is symmetric, all eigenvalues of G are real. The (muti)set of all eigenvalues
of G is called the spectrum of G.

Let G1, . . . , Gs be the components of G, and the vertices and edges are ordered
from G1 to Gs. Then the adjacency, incidence and Laplacian matrices are written in
a simple form as (23), where Ai, Mi, Li are the adjacency, incidence and Laplacian
matrices of Gi, respectively. From this, it follows that

ΦG(t) = ΦG1
(t)ΦG2

(t) . . .ΦGs
(t).
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Question (Weekly report): exercise 1, page 15.

Question (Final report): exercise 2, page 15.

Question (Weekly report): exercise 3, page 15. You may calculate ΦK3
(t) and

ΦK2,2
(t) instead of the original question.

Question (Final report): exercise 6, page 15.
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# 4

2 EULERIAN/HAMILTONIAN MULTIGRAPHS

- 2.1 -

In this chapter, we study Eulerian/Hamiltonian multigraphs. The definition of
them is already done in Section 1.5. Eulerian multigraphs, together with traceable
multigraphs, are characterized simply by Theorem 2.1, that is,

Theorem 2.1. Let G be a finite connected (multi)graph, then

G is an Eulerian (multi)graph ⇐⇒ G has no odd vertices
G is traversable ⇐⇒ G has 0 or 2 odd vertices

A proof of this theorem is given in the text, but rough sketch of the proof follows.
For the first equivalence (29) (⇒), let G be an Eulerian multigraph, and w be an
Eulerian circuit. If we write w in G, which uses all edges exactly once. Then we see
that all vertices are even.

For (29) (⇐), the proof is more difficult than (⇒). Let G be connected and has no
odd vertices. Let w be the longest closed trail in G, and we show this is an Eulerian
circuit by reduction to absurdity. Suppose w is not, then there exist edges not on w,
but incident to some vertex u on w. We can make a trail w′ from u using unused edges
by w, then we reach to u again. Then we compose w and w′ at u to get longer closed
trail than w, contradiction.

u

A general (not necessarily connected) Eulerian multigraph is composed of a con-
nected Eulerian component and isolated vertices. Similarly, a general traversable
multigraph is composed of a connected traversable component and isolated vertices.
For these graphs, we have Theorem 2.1’.
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Question (Weekly report): What is an Eulerian multigraph and what is a Hamil-
tonian graph. (Don’t copy the text, answer in your words.)

Question (Final report): Find all connected Eulerian graphs on 6 vertices (up to
isomorphism).

- 2.2 -

Unlike the Eulerian case, there are no general methods to determine whether a graph
is Hamiltonian or not. But concrete problems may be solved.

Question (Weekly report): Find an Eulerian circuit in the upper left graph, and a
Hamiltonian cycle in the upper right graph, in Figure 7.

3 CONNECTIVITY

- 3.1 -

This chapter is devoted to connectivity of (muti)graphs. There are several important
theorems, and in general, proofs of them are very difficult. We avoid to check detailed
contents of the proofs, and aim to understand clearly the meaning of the theorems.

Recall the definition of vertex/edge connectivity. That is the size of a minimum
cut/disconnecting set of a multigraph. But there are several specially treated graphs:

(multi)graph vertex/edge connectivity (κ(G)/λ(G))
the trivial graph 0/0
a looped vertex 0/0

disconnected (multi)graphs 0/0
Kn n− 1/n− 1

The (vertex) connectivity of Kn is specially defined, but the edge connectivity of
Kn is defined as usual.

Theorem 3.1 says that:

a minimum disconnecting set ⇒ edge cut ⇒ disconnecting set.
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edge cuts

minimum
disconnecting

sets

disconnecting sets

Using this theorem, we can determine the edge connectivity of Kn to be n− 1.

Question (Final report): Determine the edge connectivity of Kn using this Theo-
rem 3.1.

Theorem 3.2 says that for a finite multigraph G, it holds that κ(G) ≤ λ(G) ≤ δ(G),
where κ(G) is the vertex connectivity, λ(G) is the edge connectivity and δ(G) is the
smallest degree over all vertices.

Let us follow the proof. Since λ(G) ≤ δ(G) is easy, we show κ(G) ≤ λ(G). We
may assume G has no loops, because loops have no effect for connectivity. We also
assume thatG has no multi-edges, because multi-edges make only the edge connectivity
increase. If G = Kn, then κ(G) = λ(G).

Therefore we assume that G is a connected graph which is not complete. Let F be
a minimum disconnecting set of s edges. By Theorem 3.1, F is an edge cut of G and
G− F has exactly 2 components H,H ′. Let S = V (H), S′ = V (H ′) = V − S. Let V ′

be the set of end vertices of all edges in F . Let T = S ∩ V ′ and T ′ = S′ ∩ V ′.

H

H’T T’

G

F

If T 6= S, then we can disconnect G by removing T to remove all of F from G, where
|T | ≤ s. Hence κ(G) ≤ λ(G). The case T ′ 6= S′ is treated similarly.
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Consequently, we solve the case that T = S and T ′ = S′. Let |T | = m and |T ′| = n.
Noting that G is not complete, there are two cases: (i) there exist nonadjacent vertices
x ∈ T and x′ ∈ T ′, (ii) any vertices x ∈ T and x′ ∈ T ′ are adjacent, but there exist
vertices x, y ∈ T or x′, y′ ∈ T ′ such that x, y or x′, y′ are not adjacent.

(i): Remove vertices with edges in F step by step except x and x′, then after at
most s steps, F disappears and therefore G is disconnected into a graph where x and
x′ remain.

(ii): Let x, y be nonadjacent. Remove all vertices except x and y. Then F is removed
and G is disconnected.

# of removed vertices = m+ n− 2 < mn = s

Accordingly, it is proved that κ(G) ≤ λ(G). �

Question (Weekly report): Prove m+ n− 2 < mn for all positive integers m,n.
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# 5

3 CONNECTIVITY (continued)

- 3.2 -

In this section, we explain Menger’s theorem, which is a very important one describ-
ing a relationship between the local connectivity κ(u, v) and the maximum number
κ′(u, v) of possible independent (u, v)-paths.

Similarly, edge version of this theorem exists, which combines the local edge-connec-
tivity λ(u, v) and the maximum number λ′(u, v) of possible edge-independent (u, v)-
paths. Here, necessary definitions follow, note that separate u from v means that kill
all (u, v)-paths.

symbol name definition

κ(u, v) local connectivity
the minimum number of vertices ( 6= u, v)

to remove to separate u from v

λ(u, v)
local

edge-connectivity
the the minimum number of edges
to remove to separate u from v

κ′(u, v) -
the maximum number of independent

(u, v)-paths

λ′(u, v) -
the maximum number of edge-independent

(u, v)-paths

- independent
no two of them share any vertex, except

the initial and terminal ones
- (vertex-)disjoint no two of them share any vertex

-
edge-independent
= edge-disjoint

no two of them share any edge

Then Theorem 3.3 (Menger’s theorem) says that, for a finite graph G and its distinct
vertices u, v,

κ(u, v) = κ′(u, v) (u, v are nonadjacent)
λ(u, v) = λ′(u, v).

We also introduce another version of Menger’s theorem. To represent it, several
notions are defined. Let G be a multigraph, and A, B, X be sets of vertices of G, F
be a set of edges of G, H be a submultigraph of G.

name/symbol definition
A-B path a path from a vertex in A to a vertex in B

proper inner vertices are not in A nor B
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s-separating set X
between A and B

every (proper) A-B path meets X and |X | = s

s-disconnecting set F
between A and B

every (proper) A-B path meets F and |F | = s

κ(G,A,B)
the minimum size of a separating set

between A and B in G

λ(G,A,B)
the minimum size of a disconnecting set

between A and B in G

κ∗(G,A,B)
the maximum number of disjoint (proper)

A-B paths in G

λ∗(G,A,B)
the maximum number of edge-disjoint (proper)

A-B paths in G

H-path nontrivial path which meets H exactly in its ends

It is an important point that a separating set X between A and B may contain any
elements in A or B, thus it is possible that X = A or X = B.

Then Theorem 3.4 (another version of Menger’s theorem) says that, for a finite
graph G and two sets A,B of vertices of G,

κ(G,A,B) = κ∗(G,A,B), λ(G,A,B) = λ∗(G,A,B).

Here, for the second equality, suppose A ∩B = ∅.

In the text, first we prove Theorem 3.4, and as a corollary, we have Theorem 3.3.
The proof of Theorem 3.4 is performed by induction on the partial order over graphs,
which is defined by

H ≤ H ′ ⇐⇒ H is a subgraph of H ′.

But this proof is rather difficult and we skip detailed contents.

Once we accept Theorem 3.4, the second equality of Theorem 3.3 is a special case
of the second half of Theorem 3.4.

The first equality of Theorem 3.3 is derived as follows. Let A and B be the sets of
all neighbors of u and v, respectively. Applying Theorem 3.4 for this A,B, we have

κ(u, v) = κ(G,A,B) = κ∗(G,A,B) = κ′(u, v)

as desired.

A B

u vX

G
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We can also derive Theorem 3.5, the global version of Menger’s theorem, from
Theorem 3.3. The theorem says that

(i) G is k-connected if and only if it has k independent paths between any two
distinct nonadjacent vertices,

(ii) G is k-edge-connected if and only if it has k edge-disjoint paths between any
two distinct vertices.

See the text for the detailed proof.

Question (Weekly report): For the following graph on the left side, with the sets of
vertices A and B, answer exercise 2 (1)–(4), page 24.

Question (Final report): Solve a similar question for the graph on the right side
with A,B.

Weekly Final
B: blue vertices
A: red vertices
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# 6

4 TREES

- 4.1 -


