
COMPLEXANALYSIS

K. ASAI

1. Complex numbers and the complex plane

1.1. Complex numbers and the complex plane. A complex number is the number
expressed as z = x + yi with real numbers x and y. Here, i =

√
−1 represents the

imaginary unit, which satisfies i2 = −1. If y = 0, then z is a real number, hence a
real number is regarded as a kind of complex number. A complex number which is not
real is called an imaginary number. A number yi (y 6= 0) is called a pure imaginary
number. For a complex number z = x+ yi, x is called the real part of z, denoted by
Re z, and y is called the imaginary part of z, denoted by Im z.

For two complex numbers z = x+ yi, z′ = x′ + y′i, it holds that

z = z′ ⇐⇒ x = x′ and y = y′. (1)

Thus every complex number is represented as the point on the coordinate plane, whose
components are the real part and the imaginary part, that is to say, x+yi is represented
as the point (x, y). This plane, which represents all complex numbers, is called the
complex plane. The coordinate axis representing the real (respectively imaginary)
parts of complex numbers is called the real (respectively imaginary) axis. The origin
represents 0. The whole complex plane is identified with the set of all complex numbers
C. The real axis is identified with the set of all real numbers R.

For z = x+ yi, we write z = x− yi, which is called the complex conjugate of z. On
the complex plane, z and z are located at the symmetric positions with respect to the
real axis.

1.2. The sum and difference of complex numbers, and multiplication of com-

plex numbers by real numbers. A point z on the complex plane corresponds to its
position vector. Thus a complex number z is represented as the vector from the origin
to the point z. Of course, this vector represents the same complex number after any
translation.

For complex numbers z = x+ yi, z′ = x′ + y′i, define the sum z + z′ of them by

z + z′ = (x+ x′) + (y + y′)i. (2)

On the complex plane, we have, as vectors,

(x, y) + (x′, y′) = (x+ x′, y + y′), (3)

say, the sum of complex numbers is represented as the sum of their position vectors.

Key words and phrases. complex numbers, complex plane, polar form, de Moivre’s theorem, zn =
c, Riemann sphere.
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Obviously, we have z + z′ = z′ + z, (z + z′) + z′′ = z + (z′ + z′′).
For a complex number z, −z is defined as the complex number satisfying that

z + (−z) = (−z) + z = 0, which is the inverse vector of the vector z as a vector, or
which is the point symmetric to z with respect to the origin as a point, say, −z′ =
−(x′ + y′i) = −x′ − y′i. Hence the difference z − z′ = z + (−z′) between z and z′ is
expressed as

z − z′ = (x− x′) + (y − y′)i. (4)

On the complex plane, we have

(x, y)− (x′, y′) = (x− x′, y − y′), (5)

which is represented as the vector in the above figure. This figure is obviously valid
also because z′ + (z − z′) = z.

A real multiple of a complex number z is defined by

x′z = x′x+ x′yi. (6)

This operation is written as x′(x, y) = (x′x, x′y) on the complex plane, which corre-
sponds to scalar multiplication of a vector. For positive x′, x′z is a vector obtained
by multiplying the magnitude by x′ without changing the direction, whereas −x′z is a
vector obtained by multiplying the magnitude by x′ but inverting the direction.

1.3. The product, quotient of complex numbers and polar form. We define
the product of complex numbers assuming that distributive law holds:

zz′ = (x+ yi)(x′ + y′i) = (xx′ − yy′) + (xy′ + x′y)i. (7)

The following laws hold: zz′ = z′z, (zz′)z′′ = z(z′z′′), z(z′ + z′′) = zz′ + zz′′, (z +
z′)z′′ = zz′′ + z′z′′.

Here, we introduce polar form to understand the product of complex numbers on
the complex plane. For a complex number z = x + yi, the distance r between the
origin and the point z on the complex plane is called the absolute value (or modulus
or magnitude) of z, denoted by |z|. This is the length of the vector representing z. By

the Pythagorean theorem, we have |z| =
√

x2 + y2. Also, the general angle θ from the
positive real axis to the vector representing z is called the argument of z, denoted by
arg z. Then we see that

z = r(cos θ + i sin θ). (8)



COMPLEX ANALYSIS 3

This expression is called the polar form of z. In polar form, z is indicated by the
absolute value and the argument of z. Let us calculate the product of complex numbers
in polar form.

zz′ = r(cos θ + i sin θ) r′(cosϕ+ i sinϕ)
= rr′ [(cos θ cosϕ− sin θ sinϕ) + i(sin θ cosϕ+ cos θ sinϕ)]
= rr′ [cos(θ + ϕ) + i sin(θ + ϕ)] .

(9)
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From this result, it follows that the absolute value of the product of complex numbers
is equal to the product of the absolute values of them, and the argument of the product
is equal to the sum of the arguments:

|zz′| = |z||z′|, arg(zz′) = arg z + arg z′. (10)

For the product of more than 2 complex numbers, similar formula holds. Here, consider
zn for any positive integer n, then we have the following de Moivre’s theorem:

zn = [r(cos θ + i sin θ)]
n
= rn(cosnθ + i sinnθ). (11)

For the quotient of complex numbers, by making the denominator real, we see the
result is also a complex number. Indeed,

x′+y′i
x+yi = (x′+y′i)(x−yi)

(x+yi)(x−yi) = xx′+yy′+(xy′−x′y)i
x2+y2 = xx′+yy′

x2+y2 + xy′−x′y
x2+y2 i. (12)

Also, in (9), letting rr′ = s, θ + ϕ = ρ, we have

s(cos ρ+i sin ρ)
r(cos θ+i sin θ) = s

r [cos(ρ− θ) + i sin(ρ− θ)] ,

|z′/z| = |z′|/|z|, arg(z′/z) = arg z′ − arg z.
(13)

In particular, putting z′ = 1, we have

|1/z| = 1/|z|, arg(1/z) = − arg z. (14)

From this and (11), it follows that

z−n = 1/zn = r−n[cos(−nθ) + i sin(−nθ)]. (15)

That is, de Moivre’s theorem is valid also for negative integer powers.
In the polar form (8), we often write cos θ + i sin θ simply as eiθ, say, define1

eiθ = cos θ + i sin θ. (16)

1(16) is called Euler’s formula.
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Then the polar form of z is written as

z = reiθ. (17)

Especially, eiθ is a complex number with absolute value 1 and argument θ, thus it lies
on the unit circle. By using this notation, de Moivre’s theorem is expressed as follows.
For every integer n,

(

reiθ
)n

= rneinθ. (18)

(exercise01) Calculate the following: (1) (1+
√
3i)14. (214e

2π
3
i) (2) (−1−i)10. (32i)

(exercise02) Show the following: (1) zz = |z|2 = x2 + y2. (2) z ± z′ = z ± z′. (3)

zz′ = z z′. (4) z/z′ = z/z′. (5) ||z| − |z′|| ≤ |z ± z′| ≤ |z|+ |z′|.

1.4. The equation zn = c. Let c be a fixed complex number (complex constant).
We often need to find all complex numbers satisfying the equation zn = c, say, the
solution to zn = c. Let us solve this by using de Moivre’s theorem. Letting z = reiθ,
and c = seiϕ.

zn = c ⇐⇒ rneinθ = seiϕ (19)

Comparing the absolute values and the arguments of both sides of the right equation,
we have

rn = s. ∴ r = n
√
s.

nθ = ϕ+ 2mπ (m ∈ Z)2. ∴ θ = ϕ+2mπ
n .

(20)

Consequently, we have the solution to zn = c:

z = n
√
sei

ϕ+2mπ
n . (21)

Here, m runs over all integers, but actually, after running m = 0, 1, . . . , n− 1, m = n
turns the value of z to the one with m = 0, and then repeats this process. Hence we
consider only the cases m = 0, 1, . . . , n− 1. These values of z have the same absolute
values, and as m increases by 1, the argument increases by 2π

n . This means that all
solutions z form the vertices of a regular n-polygon.

(exercise03) Solve z5 = 32. [z = 2e
2m
5
πi (m = 0, 1, 2, 3, 4)]

0

2
Z represents the set of all integers.
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1.5. Expression of sets. Sometimes we want to express sets on the complex plane by
equations or inequalities. Here we give simple examples. Let r be a positive constant,
and consider the equation |z| = r. This means that the distance between z and the
origin is equal to r, hence z lies everywhere on the circle with the center at the origin
and radius r. Therefore the equation represents the circle. Similarly, |z− c| = r means
the distance between z and c is equal to r, and represents the circle with the center
at c and radius r. Furthermore, |z − c| ≤ r represents the circle and the inner area of
it. For more complicated equations, letting, for example, z = x + iy and derive the
relations between x and y.
(exercise04) Illustrate the area of z satisfying z2 + z2 ≤ 4.

O
z = (x,y)

x

y

Z

1−ζ

1

N(0,0,1)

P(ξ,η,ζ)Q

1.6. The Riemann sphere. A sphere K of diameter 1 is on the complex plane,
touching at the origin. Every complex number is represented as a point onK as follows.
Set up Z-axis vertically to the complex plane, intersecting with K at the origin and
N(0, 0, 1). For a point (x, y) on the complex plane, the intersecting point of the line
connecting N and (x, y), and K is uniquely determined, and denote it by P (ξ, η, ζ).
If (x, y) moves then P also moves, and for any P 6= N , the corresponding point (x, y)
exists, thus the complex plane corresponds one-to-one to K −N . This correspondence
is called the stereographic projection, which represent a complex number x+ yi as the
corresponding point P (ξ, η, ζ) on K.

If P comes closer to N , then the corresponding point (x, y) go further from the
origin, and so we identify N with the point of infinity ∞. Consequently, K is regarded
as representing C ∪ {∞} = C, and called the Riemann sphere or the complex sphere.

If we compare the Riemann sphere to Earth, correspondence examples of the stere-
ographic projection follows.

the complex plane and ∞ the Riemann sphere
∞ the North Pole

|z| > 1 the Northern Hemisphere
a unit circle the Equator

|z| < 1 the Southern Hemisphere
0 the South Pole
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Here, we study the formula between x, y and ξ, η, ζ. Since P is on the sphere K,

ξ2 + η2 + ζ2 = ζ. (22)

As △ONz ∼ △QNP ,
1 : 1− ζ = x : ξ = y : η. (23)

∴ ξ = (1− ζ)x, η = (1− ζ)y. (24)

∴ x = ξ
1−ζ , y = η

1−ζ . (25)

Next, substituting (24) into (22), we have

(1− ζ)2x2 + (1− ζ)2y2 + ζ2 = ζ.

∴ (1− ζ)(x2 + y2) = ζ. ∴ ζ = x2+y2

1+x2+y2
.

By (24), ξ = x
1+x2+y2 , η = y

1+x2+y2 .

(26)

(note) Every line on the complex plane corresponds to some circle on the Riemann
sphere passing ∞, and every circle on the complex plane corresponds to some circle on
the Riemann sphere not passing ∞. This fact is called a circle-to-circle correspondence,
which we prove below. Let a circle on the complex plane be x2 + y2 + ax+ by+ c = 0.
Then by (25), the corresponding P (ξ, η, ζ) satisfies that

(

ξ
1−ζ

)2

+
(

η
1−ζ

)2

+ a ξ
1−ζ + b η

1−ζ + c = 0.

Hence by (22), ζ + aξ + bη + c(1− ζ) = 0.
(27)

This shows that P is on some plane, and P is also in the sphere, therefore on some
circle. It is clear that this circle does not pass ∞. A proof for lines on the complex
plane is similar.
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2.1. Complex functions. A complex function is a function from some set of complex
numbers to another set of complex numbers. A complex function f which maps z
to w is denoted by w = f(z). Here, since z moves some set of complex numbers, z
is called a complex independent variable, and since w moves dependent on z, w is
called a complex dependent variable. For simplicity, we usually call z and w complex
variables or variables. A complex function f(z) is expressed using the real part and the
imaginary part as f(z) = u(z) + iv(z), where z = x+ iy and z corresponds one-to-one
to the pair (x, y). Hence we have

f(z) = u(z) + iv(z) = u(x, y) + iv(x, y). (1)

We sometimes write simply as f(z) = u+iv. The complex plane representing the value
of z is called the z-plane, and the complex plane representing the value of w = f(z) is
called the w-plane. The set D where the variable z of a complex function f(z) moves
is called the domain of f(z). The set of all values of f(z), that is, {f(z) | z ∈ D} is
called the image of f(z) or the image of D by f(z), denoted by f(D).

Sometimes we write a complex function, not using variables, but as

f : D −→ E. (2)

This is a complex function f which maps every point of D to some point of E; D
is the domain of f , and E is the codomain of f . In general, f(D) ⊂ E, however, if
f(D) = E, then f is called a surjection. If z 6= z′ =⇒ f(z) 6= f(z′), then f is called an
injection. If f is both a surjection and an injection, it is called a bijection or one-to-one
correspondence.
(exercise01) If f(z) = z2, determine u and v.
(exercise02) Determine the image of given D by also given f(z). Illustrate on the
w-plane. (The equation of the image follows.) (1) f(z) = iz, D : |z − 2i| ≤ 1.
(|w + 2| ≤ 1) (2) f(z) = z2, D : 2 ≤ |z| ≤ 3. (4 ≤ |w| ≤ 9) (3) f(z) = z2 − 6z,
D : |z − 3| ≤ 2. (|w + 9| ≤ 4)

1
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2.2. Real functions of two variables. As we saw in (1), every complex function
is composed of two real functions of two variables. So we introduce some properties
of real functions of two variables (two-variable functions or functions, for simplicity).
Continuity and differentiability of two-variable functions is rather complicated than
ones of one-variable functions. First of all, to visualize a two-variable function u(x, y),
we prepare its graph as a surface in the xyz-space. Intuitively speaking, u(x, y) is called
continuous if its graph is not torn, but more precisely, u(x, y) is called continuous at a
point (x0, y0) if the following is satisfied.

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0) (3)

Here, there are infinitely many direction from which (x, y) gets close to (x0, y0). This
equation means that (x, y) → (x0, y0) from any direction implies u(x, y) → u(x0, y0).
If u(x, y) is continuous at every point in some set D under consideration, then u(x, y)
is called continuous in D or simply continuous.

A function u(x, y) is partially differentiable at a point (x, y) if the following limits
exist.

∂u

∂x
(x, y) ≡ ux(x, y) = lim

∆x→0

u(x+∆x, y)− u(x, y)

∆x
∂u

∂y
(x, y) ≡ uy(x, y) = lim

∆y→0

u(x, y +∆y)− u(x, y)

∆y

(4)

They are called the partial differential coefficient of u(x, y) at (x, y) with respect to x
and y, respectively from top to bottom. If u(x, y) is partially differentiable at every
point in some set D under consideration, then u(x, y) is partially differentiable in D
or simply partially differentiable. Then both of (4) are regarded as new functions
of x and y, and so they are called the partial derivatives of u(x, y). In more detail,
ux(x, y) (respectively, uy(x, y)) is the partial derivative of u(x, y) with respect to x
(respectively, y). The operation to derive ux(x, y) (respectively, uy(x, y)) from u(x, y)
is called the partial differentiation of u(x, y) with respect to x (respectively, y). If
both of the partial derivatives (4) of u(x, y) are partially differentiable (in D), then
u(x, y) is called twice partially differentiable (in D). All functions derived by partially
differentiating u(x, y) twice are called the second partial derivatives of u(x, y). They
are denoted by

∂2u

∂x2
(x, y) =

∂

∂x

(

∂u

∂x

)

(x, y) = uxx(x, y)

∂2u

∂y∂x
(x, y) =

∂

∂y

(

∂u

∂x

)

(x, y) = uxy(x, y)

∂2u

∂x∂y
(x, y) =

∂

∂x

(

∂u

∂y

)

(x, y) = uyx(x, y)

∂2u

∂y2
(x, y) =

∂

∂y

(

∂u

∂y

)

(x, y) = uyy(x, y)

(5)

Similarly, in general, we can define the notions of r times partially differentiable,
and the r-th partial derivatives (partial derivatives of order r). If a function is contin-
uous, r times partially differentiable, and all partial derivatives of order at most r are
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continuous, then the function is said to be of class Cr or a Cr-function.1 A C0-function
is a continuous function. If a function is of class Cr for all positive integer r, it is said
to be of class C∞. Polynomials, exponential functions, the trigonometric functions
sin, cos, and their compositions, etc. are of class C∞ (in the whole complex plane).
A function u(x, y) of class C2 satisfies that uxy = uyx. This means that the order of
partial differentiations is interchangeable. In general, we have

Theorem 1. For every function of class Cr, the order of partial differentiations at
most r times is interchangeable.

There is another notion “(totally) differentiable” which we will use later. This is
defined as, in the first equation of (14), ∆x,∆y → 0 implies ǫ1√

∆x2+∆y2
→ 0. More

intuitively speaking, the graph of a function is approximated by a plane in a sufficiently
small region.

The notions appearing in this section concerning continuity and differentiation are
defined similarly for n-variable functions u(x1, . . . , xn).

2 Now what is the relationship
between them? It is represented by a Venn diagram as follows. Proofs of these facts are
omitted. In addition, we give sample functions which belong to the regions numbered
1 to 4, respectively. Here z = x+ iy, and for the samples 2–4, the value at the origin
id defined to be 0.

1: |z|. 2: xy
x2+y2 . 3: sgn(xy)

√

|xy| sin
√

|xy|

x2+y2 . 4: |z|2 cos 1
|z| .

C

8

C1

C2

Functions

continuous
partially
differentiable

totally differentiable

C1

1 2

3
4

1A function of class C1 is also called continuously differentiable, and a function of class Cr is also

called r times continuously differentiable.
2Theorem 1 holds for any n-variable functions.
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2.3. Complex derivatives. A complex function f(z) is defined to be continuous at
a point c if the following holds.

lim
z→c

f(z) = f(c) (6)

Also, f(z) is called continuous in a set D if f(z) is continuous at every point in D. The
equation (6) has a strong meaning that z → c in any path implies the convergence of
f(z) to f(c). Here, letting z = x+ yi, c = a+ bi, (6) is rewritten as

lim
(x,y)→(a,b)

[u(x, y) + iv(x, y)] = u(a, b) + iv(a, b)

⇐⇒







lim
(x,y)→(a,b)

u(x, y) = u(a, b)

lim
(x,y)→(a,b)

v(x, y) = v(a, b).

(7)

Hence, f(z) is continuous at a point c if and only if u and v are continuous at a point
(a, b), and therefore, f(z) is continuous in a set D if and only if u and v are continuous
in D.

A complex function f(z) defined to be differentiable at a point z if there exists a
limit:

lim
∆z→0

f(z +∆z)− f(z)

∆z
= f ′(z). (8)

This is called the differential coefficient of f(z) at z. Further, f(z) is differentiable in
a set D if f(z) is differentiable at every point in D. Then we have a complex function
f ′(z) which maps every point z in D to f ′(z). This f ′(z) is called the derivative of
f(z). The operation to derive f ′(z) from f(z) is called the differentiation of f(z).
If f ′(z) is again differentiable in D, then f(z) is called twice differentiable and the
derivative of f ′(z) is denoted by f ′′(z) = f (2)(z), which is called the second derivative
of f(z). Similarly, we define the notions of n times differentiable and the n-th derivative
(derivative of order n).3

The equation (8) has, similarly to (6), a strong meaning that ∆z → 0 in any path
implies the convergence of the limit to exactly one limit value. This condition is
stronger than the case of ordinary real differentiation even if the definition is given by
the same formula.

2.4. Cauchy–Riemann equations. Now suppose that a complex function f(z) =
u(x, y) + iv(x, y) is differentiable at a point z, say, the limit (8) exists. Letting ∆z =
∆x+ i∆y, the contents of the limit (8) is represented by u and v as follows.

1
∆x+i∆y [u(x+∆x, y +∆y) + iv(x+∆x, y +∆y)− u(x, y)− iv(x, y)]

= 1
∆x+i∆y

[u(x+∆x, y +∆y)− u(x, y)] + i
∆x+i∆y

[v(x+∆x, y +∆y)− v(x, y)]

(9)
Since f(z) is differentiable by hypothesis, the limit (9) has one value f ′(z), whatever

the direction of ∆z → 0. First, we differentiate along x-axis. Then we put ∆y = 0 in

3For a function w = f(z), we sometimes write as f ′(z) = dw

dz
, f ′′(z) = d

2
w

dz2
, . . . , f (n)(z) = d

n
w

dzn
.
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(9).

lim
∆x→0

[

1
∆x [u(x+∆x, y)− u(x, y)] + i

∆x [v(x+∆x, y)− v(x, y)]
]

= ux(x, y) + ivx(x, y) = f ′(z).
(10)

Similarly, differentiate along y-axis. Letting ∆x = 0 on the right-hand side of (9),

lim
∆y→0

[

1
i∆y [u(x, y +∆y)− u(x, y)] + i

i∆y [v(x, y +∆y)− v(x, y)]
]

= 1
i uy(x, y) + vy(x, y) = f ′(z).

(11)

Hence we have

ux(x, y) + ivx(x, y) = vy(x, y)− iuy(x, y) = f ′(z), (12)

and therefore,
{

ux(x, y) = vy(x, y)
uy(x, y) = −vx(x, y). (13)

This equations are called the Cauchy–Riemann equations, which give a necessary con-
dition for the differentiability of f(z).

2.5. Conditions for differentiability. Next we study the necessary and sufficient
conditions for the differentiability of f(z) at a point z. For differentiability, (13) is
necessary, thus we proceed with this presupposition hereafter. First, let ǫ1 and ǫ2 be
errors of linear approximations of u and v by using differentiation, respectively.

u(x+∆x, y +∆y)− u(x, y) = ux(x, y)∆x+ uy(x, y)∆y + ǫ1

v(x+∆x, y +∆y)− v(x, y) = vx(x, y)∆x+ vy(x, y)∆y + ǫ2
(14)

From these, it follows that

f(z +∆z)− f(z) = u(x+∆x, y +∆y)− u(x, y) + i[v(x+∆x, y +∆y)− v(x, y)]

= ux(x, y)∆x+ uy(x, y)∆y + ǫ1 + i[vx(x, y)∆x+ vy(x, y)∆y + ǫ2].

By the Cauchy–Riemann equations,

= ux(x, y)∆x− vx(x, y)∆y+ ǫ1 + i[vx(x, y)∆x+ ux(x, y)∆y + ǫ2]

= [ux(x, y) + ivx(x, y)](∆x+ i∆y) + ǫ1 + iǫ2.

Letting ǫ1 + iǫ2 = ǫ, and noting that ∆z = ∆x+ i∆y,

= [ux(x, y) + ivx(x, y)]∆z + ǫ.
(15)

Consequently, we have

f(z +∆z)− f(z)

∆z
= ux(x, y) + ivx(x, y) +

ǫ

∆z
(16)

Here, let us assume that f(z) is differentiable at a point z. As we have seen, then
(12) holds, hence (16) is rewritten as

f(z +∆z)− f(z)

∆z
= f ′(z) +

ǫ

∆z
, (17)

and therefore it is necessary for the left-hand side to converge to f ′(z) that

ǫ

∆z
→ 0. (18)
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Conversely, if we assume (18), the left-hand side of (16) converges to ux(x, y) +
ivx(x, y), which shows that f(z) is differentiable at a point z.

In this way, we see that (18) is the necessary and sufficient condition for f(z) to be
differentiable at a point z. We have supposed, however, that the necessary condition
(13) as a major premise, thus the necessary and sufficient conditions are both of (13)
and (18).

Here it holds that
ǫ

∆z
=

ǫ1
∆z

+ i
ǫ2
∆z

, (19)

and hence
ǫ

∆z
→ 0 ⇐⇒ ǫ1

∆z
→ 0 and

ǫ2
∆z

→ 0, (20)

or equivalently,

ǫ1
√

∆x2 +∆y2
→ 0 and

ǫ2
√

∆x2 +∆y2
→ 0. (21)

This means that u and v are totally differentiable at a point (x, y). By the use of this
term, we have the following.

Theorem 2. The necessary and sufficient condition for f(z) = u(x, y)+ iv(x, y) to be
differentiable at a point z = x+ yi is that u and v are totally differentiable and satisfy
the Cauchy–Riemann equations at a point (x, y).

2.6. Fundamental terminologies and conditions for holomorphy. Hereafter, we
introduce fundamental terminologies concerning topology and differential calculus. An
open disc is the interior (excluding the boundary) of a circle of positive radius. Open
discs of center z are called neighborhoods of z. There are infinitely many neighborhoods
of z.

Let S be a set on the complex plane. If no neighborhood of a point z is contained
in S or the complement Sc of S, then z is called a boundary point of S. The set of all
boundary points of S is called the boundary of S, denoted by ∂S. Define the interior
So, closure S, exterior Se of S as follows.

So = S − ∂S S = S ∪ ∂S
Se = (Sc)o = S

c (22)

The whole complex plane C is divided into

C = So ∪ ∂S ∪ Se. (23)

A point in So is an interior point of S, a point in Se is an exterior point of S. This
is equivalent to the definition that if some neighborhood of z is contained in S, then
z is an interior point; and if some neighborhood of z is contained in Sc, then z is an
exterior point. It holds that

z is an exterior point of S ⇐⇒ z is an interior point of Sc. (24)
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A set which satisfies that S = So is called an open set, whereas a set which satisfies
that S = S is called a closed set. In other words, a set with no boundary points is an
open set, whereas a set with all boundary points is a closed set. We have

S is an open set ⇐⇒ Sc is a closed set. (25)

The whole complex plane and open discs are examples of open sets. An open set
allows several holes if it contains no boundary point of the holes. Also, an open set
can be disconnected into several components. A closed set also has holes and can be
disconnected. A closed disc, which is a disc with the boundary circle, is an example of
a closed set. The whole plane and the empty set are open as well as closed sets. Finite
union or intersection of open (respectively, closed) sets are also open (respectively,
closed).4 A connected open set is called a domain.

Here, we summarize the basic notions about differential calculus.

(i) f(z) is called differentiable in a set S if it is differentiable at every point in S.
(ii) f(z) is called holomorphic at a point z if it is differentiable in some neighborhood
of z.
(iii) f(z) is called holomorphic in a set S if it is holomorphic at every point in S.
(iv) u(x, y) is called totally differentiable in a set S if it is totally differentiable at every
point in S.
(v) u(x, y) is called of class C1 in a domain D, if u is continuous in D, partially
differentiable in D, and ux and uy are continuous in D. Similarly, u is called of class
Cr in D, if u is continuous in D, r times partially differentiable in D, and all partial
derivatives of order at most r are continuous in D. u is called of class C∞ in D, if it
is of class Cr in D for every natural number r.

According to (i) – (iii), the proposition that f(z) is differentiable in a open set or
domain D is equivalent to the proposition that f(z) is holomorphic in D. For a general
set S, f(z) is holomorphic in S, if it is differentiable in some open set containing S.

By Theorem 2, we have

Theorem 3. The necessary and sufficient condition for f(z) = u(x, y)+ iv(x, y) to be
holomorphic in a domain D is that u and v are totally differentiable in D and satisfy
the Cauchy–Riemann equations in D.

Here, as we shall study later, if f(z) is holomorphic in a domain D, then f ′(z) is
also holomorphic in D. Hence f ′′(z) is again holomorphic in D, and therefore f(z)
is differentiable any times in D and its derivatives of any order are continuous in D.
Thus by (12)), u and v are partially differentiable any times in D and their partial
derivatives are continuous in D. Consequently, u and v are of class Cr in D for any r,
and so of class C∞ in D.

By this argument, we can replace the word “totally differentiable” in Theorem 3
with “of class C1”. This version is convenient because it is easy to determine whether
a function is of class C1 or not.

4The union of infinitely many open sets are also open, whereas the intersection of infinitely many

open sets are not always open. The intersection of infinitely many closed sets are also closed, whereas
the union of infinitely many closed sets are not always closed.
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Theorem 3’. The necessary and sufficient condition for f(z) = u(x, y) + iv(x, y) to
be holomorphic in a domain D is that u and v are of class C1 in D and satisfy the
Cauchy–Riemann equations in D.

2.7. Harmonic functions. If a function u(x, y) is of class C2 and u satisfies Laplace’s
equation:

uxx + uyy = 0, (26)

then u is called a harmonic function. If two harmonic functions u and v satisfy the
Cauchy–Riemann equations, then v is called conjugate to u. The condition for f(z) to
be holomorphic is described in terms of harmonic functions.

Theorem 4. The necessary and sufficient condition for f(z) = u(x, y)+ iv(x, y) to be
holomorphic in a domain D is that u and v are harmonic in D and v is conjugate to
u in D.

Proof. Let f(z) be holomorphic in D. By the description in Section2.6, u and v are of
class C2. Also, as they satisfy the Cauchy–Riemann equations: ux = vy , uy = −vx in
D, we have

uxx + uyy = (vy)x + (−vx)y = vyx − vxy = 0
vxx + vyy = (−uy)x + (ux)y = −uyx + uxy = 0.

(27)

Hence u and v are harmonic in D. It is clear that v is conjugate to u in D.
Conversely, if u and v are harmonic and v is conjugate in D, then f(z) is obviously

holomorphic in D. �

(exercise03) Show the function u = x3 + 3x2y − 3xy2 − y3 is harmonic, and determine
the holomorphic function f(z) = u+ iv.
(answer)

uxx + uyy = (3x2 + 6xy − 3y2)x + (3x2 − 6xy − 3y2)y
= 6x+ 6y − 6x− 6y = 0.

(28)

Hence u is harmonic. Next as f(z) is holomorphic, by the Cauchy–Riemann equations,

ux = 3x2 + 6xy − 3y2 = vy, (29)

uy = 3x2 − 6xy − 3y2 = −vx. (30)

By (29),

v =

∫

(3x2 + 6xy − 3y2)dy = 3x2y + 3xy2 − y3 + g(x). (31)

Substituting this in (30),

3x2 − 6xy − 3y2 = −(6xy + 3y2 + g′(x)).
∴ g′(x) = −3x2. ∴ g(x) = −x3 + c (c ∈ R).
∴ f(z) = x3 + 3x2y − 3xy2 − y3 + i(−x3 + 3x2y + 3xy2 − y3 + c)

= (1− i)z3 + ic.

(32)
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2.8. Limits of functions. In this chapter, we have dealt with rather simple limits
of functions. For the next chapter and beyond, several formulas concerning limits of
functions are listed below. For complex functions f(z), g(z), suppose lim

z→c
f(z) and

lim
z→c

g(z) exist, then the following holds.

lim
z→c

(f(z)± g(z)) = lim
z→c

f(z)± lim
z→c

g(z) lim
z→c

kf(z) = k lim
z→c

f(z)

lim
z→c

f(z)g(z) = lim
z→c

f(z) · lim
z→c

g(z) lim
z→c

f(z)

g(z)
=

lim
z→c

f(z)

lim
z→c

g(z)

lim
z→c

g̃(f(z)) = g̃
(

lim
z→c

f(z)
)

.

(33)

Formulas for the sum or product of more than two functions are very similar. For
the fourth formula, suppose lim

z→c
g(z) 6= 0, and the last formula, g̃(w) is continuous at

w = lim
z→c

f(z).

For a complex function f(z), lim
z→∞

f(z) means the limit of f(z) as z comes closer to

a point of infinity ∞ on the Riemann sphere. In other words, letting z = 1/t,

lim
z→∞

f(z) = lim
t→0

f(1/t). (34)

Similarly, lim
z→c

f(z) = ∞ means that f(z) comes closer to a point of infinity ∞ as z → c,

and so it is defined by

lim
z→c

f(z) = ∞ ⇐⇒ lim
z→c

1

f(z)
= 0. (35)



CHAPTER 3

HOLOMORPHIC FUNCTIONS

⋆ 12 ⋆

keywords: differentiation formulas, entire functions, polynomials,

rational functions, exponential functions, trigonometric functions,

periodic functions, inverse functions, logarithmic functions, root

functions, general powers

3.1. Holomorphy and continuity. Hereafter, we write “complex functions” simply
as “functions” unless confusion occurs. If a function f(z) is differentiable at a point z,
then f(z) is continuous at z, because letting ∆z → 0 in the equality

f(z +∆z) − f(z)

∆z
= f ′(z) + ǫ, (1)

we have ǫ → 0, and therefore f(z + ∆z) = (f ′(z) + ǫ)∆z + f(z) → f(z). Hence, a
holomorphic function in D is continuous in D. (Of course, the converse does not hold.)

3.2. Differentiation formulas. Complex functions satisfy several differentiation for-
mulas similar to ones for real functions. That is, if f and g are holomorphic in a
domain D, then f + g, cf , fg are also holomorphic in D, and f

g is also holomorphic in

D except the points such that g = 0 and,

(f + g)′ = f ′ + g′ (cf)′ = cf ′ (fg)′ = f ′g + fg′
(

f

g

)′

=
f ′g − fg′

g2
(2)

Let us confirm, for example the multiplicative case:

1
∆z [f(z +∆z)g(z +∆z)− f(z)g(z)]

= 1
∆z [f(z +∆z)g(z +∆z)− f(z)g(z +∆z) + f(z)g(z +∆z) − f(z)g(z)]

= 1
∆z [f(z +∆z) − f(z)] · g(z +∆z) + f(z) · 1

∆z [g(z +∆z) − g(z)]

−→ f ′(z)g(z) + f(z)g′(z). (∆z → 0) (By the continuity of g)

(3)

(exercise01) (1) Show the rest formulas. (2) Show that (f1 + f2 + · · · + fn)
′ = f ′

1 +
f ′
2 + · · ·+ f ′

n.

1
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3.3. Composition and differentiation. Composite functions satisfy the usual dif-
ferentiation formulas. Let f be holomorphic in a domain D and g be holomorphic in
f(D). Then g ◦ f is holomorphic in D, and satisfies the chain rule:

(g ◦ f)′ = (g′ ◦ f)f ′, i.e. [g(f(z))]′ = g′(f(z))f ′(z). (4)

For, letting w = f(z), ∆w = f(z+∆z)−f(z), as f is continuous in D, ∆z → 0 implies
∆w → 0, and

1
∆z [g(f(z +∆z))− g(f(z))]

= 1
∆w

[g(w +∆w)− g(w)] · 1
∆z

[f(z +∆z)− f(z)]

−→ g′(w)f ′(z) = g′(f(z))f ′(z). (∆z → 0)

(5)

3.4. Holomorphic functions. The identity function f(z) = z or a constant function
f(z) = c is clearly holomorphic in the whole complex plane. Starting with those func-
tions, iterating addition and multiplication finite times, we have a polynomial, which is
holomorphic in the whole complex plane because of the contents of 3.2. Furthermore,
division of polynomials makes a rational function, which is holomorphic in the whole
plane except the points where the denominator vanishes. A holomorphic function in
the whole complex plane is called an entire function. A point where a function is not
holomorphic is called a singularity or a singular point. A singularity is usually marked
by ×.
(exercise02) Show (zn)′ = nzn−1 by induction.

3.5. The exponential function. Here, we introduce the exponential function ez as
an important example of a non-polynomial entire function. We define ez by

ez = ex+yi := exeiy = ex(cos y + i sin y) = ex cos y + iex sin y. (6)

Letting ez = u(x, y)+ iv(x, y), we see that u and v are of class C1 and satisfy Cauchy–
Riemann equations in the whole complex plane. Hence ez is an entire function. Ob-
viously, ez coincides with the usual exponential function when z is a real number. If
f(z) is a long expression, we sometimes write ef(z) = exp(f(z)).

The exponential function satisfies the following formulas.

(ez)′ = ez

ez+w = ezew (an exponential law) ez+2πi = ez

|ez| = eRe z arg ez = Im z + 2nπ (n ∈ Z)
ez = ez

(7)

(exercise03) (1) Confirm that ez is an entire function. (2) Show (7). (3) Confirm

that e0 = 1, e−z = 1
ez , e

z−w = ez

ew .
(exercise04) Show that for any z ∈ C, ez 6= 0.
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3.6. The trigonometric functions. The trigonometric functions are defined using
the exponential function as follows.

cos z = eiz+e−iz

2 sin z = eiz−e−iz

2i tan z = sin z
cos z

sec z = 1
cos z

csc z = 1
sin z

cot z = cos z
sin z

(8)

Beside these functions, the hyperbolic functions below are used.

cosh z = ez+e−z

2
sinh z = ez−e−z

2
tanh z = sinh z

cosh z

sech z = 1
cosh z csch z = 1

sinh z coth z = cosh z
sinh z

(9)

By the argument in 3.2 – 3.5, every function expressed by the exponential function and
addition and multiplication is an entire function. Hence, cos z, sin z, cosh z, sinh z are
entire functions. All those functions we defined in this section coincide with the usual
ones when z is a real number. The trigonometric functions satisfy the formulas below.

(cos z)′ = − sin z (sin z)′ = cos z
cos(z + w) = cos z cosw − sin z sinw
sin(z + w) = sin z cosw + cos z sinw

cos(z + 2π) = cos z sin(z + 2π) = sin z tan(z + π) = tan z
cos2 z + sin2 z = 1
eiz = cos z + i sin z

(10)

The hyperbolic functions satisfy the formulas below.

(cosh z)′ = sinh z (sinh z)′ = cosh z
cosh iz = cos z sinh iz = i sin z

cosh(z + w) = cosh z coshw + sinh z sinhw
sinh(z + w) = sinh z coshw + cosh z sinhw

cosh(z + 2πi) = cosh z sinh(z + 2πi) = sinh z
tanh(z + πi) = tanh z

cosh2 z − sinh2 z = 1

(11)

(exercise05) Show that (cos z)′ = − sin z, (sin z)′ = cos z.
(exercise06) Show that cos(z+w) = cos z cosw− sin z sinw, sin(z+w) = sin z cosw+
cos z sinw.
(exercise07) (1) Show that sin2 z + cos2 z = 1. (2) Show that eiz = cos z + i sin z.

3.7. Periodic functions. For a function f(z), if there exists a nonzero constant ω,
such that, for every point z in the domain of f(z), z + ω also belongs to the domain,
and it holds that

f(z + ω) = f(z), (12)

then f(z) is called a periodic function, and ω is called the period of f(z). As we
have seen in 3.5, 3.6, the exponential function, the trigonometric functions and the
hyperbolic functions are periodic functions. For the exponential function and the
trigonometric functions, we have

ez+ω = ez ⇐⇒ ω = 2nπi (n ∈ Z)
cos(z + ω) = cos z ⇐⇒ ω = 2nπ (n ∈ Z)
sin(z + ω) = sin z ⇐⇒ ω = 2nπ (n ∈ Z).

(13)
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Hence the periods of ez are 2nπ only, and the periods of cos z or sin z are 2nπ only. A
table of the periods of important periodic functions follows.

ez 2nπi
cos z, sin z 2nπ

tan z nπ
cosh z, sinh z 2nπi

tanh z nπi

3.8. Inverse functions. For a function f(z), a function w = g(z) given by solving
an equation f(w) = z with respect to w is called the inverse function of f(z). This
definition of the inverse function g(z) is equivalent to

f(w) = z ⇐⇒ w = g(z). (14)

The inverse function of a complex function is sometimes multivalued1, but by definition,
it always holds that f(g(z)) = z. The inverse function of f is denoted also by f−1.

Theorem 1. Let D be a domain, let f : D −→ E be a holomorphic surjection2, and
let the inverse (if multivalued, take a single-valued branch of them 3) g : E −→ D of f
be continuous. Suppose f ′(w) 6= 0 in D. Then g is holomorphic in the interior of E
and g′(z) = 1

f ′(g(z))
.

Proof. Take an arbitrary point z in the interior of E and fix it. Letting w = g(z), we
have w ∈ D and f(w) = z. When z moves by ∆z, suppose w moves by ∆w. Since g
is continuous, ∆z → 0 implies ∆w → 0. Therefore

lim
∆z→0

g(z +∆z)− g(z)

∆z
= lim

∆z→0

∆w

∆z
= lim

∆w→0

1
∆z
∆w

=
1

f ′(w)
=

1

f ′(g(z))
= g′(z), (15)

and so g is differentiable at z. Hence g is holomorphic in the interior of E. �

1If a function has finitely or infinitely many values at a point, then it is called a multivalued

function. Regarding each distinct value as a distinct function, a multivalued function is considered
also as a set of functions. An ordinary function with one value at every point is called a single-valued

function. If a function has up to n values in its domain, then it is called an n-valued function. A

function not n-valued for finite n is called an infinitely many-valued function.
2f is holomorphic in D and satisfies f(D) = E.
3A single-valued function made by taking a value of multivalued function is called a single-valued

branch of it.
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3.9. The logarithmic function. The inverse function of ez is called the logarithmic
function denoted by log z. That is, if we solve ew = z with respect to w, then we have
w = log z. Letting w = u+ iv,

ew = eu+iv = eueiv = z. (16)

Here taking the absolute values of both sides, we have eu = |z| ⇐⇒ u = Log |z|,
where Log |z| denotes the natural logarithm of the positive numbers. Next comparing
the arguments of both sides, we have v = arg z. Consequently,

w = log z = Log |z|+ i arg z. (17)

Since arg is multivalued, log is also multivalued. The argument of z satisfying −π <
θ ≤ π is called the principal value of the argument, denoted by Arg z. This is uniquely
determined if z 6= 0. Using this value, we have

log z = Log |z|+ iArg z + 2nπi (n ∈ Z). (18)

In addition, the function

Log z = Log |z|+ iArg z (19)

is called the principal value of the logarithm. From this, it follows that

log z = Log z + 2nπi. (20)

Though the logarithmic function is multivalued (infinitely many-valued), if we note
its one value (single-value branch), by (17), it is continuous in a simply-connected4

domain. Also, it always holds that (ew)′ = ew 6= 0. Hence by Theorem 1, (a single-
value branch of) the logarithmic function is holomorphic in such a domain, and its
derivative is given by

(log z)′ =
1

(ew)′
=

1

ew
=

1

z
. (21)

As for the (complex) logarithm, ordinary formulas for the real logarithm sometimes
fail. It is valid that

log(z1z2) = log z1 + log z2, log z1
z2

= log z1 − log z2, log 1
z = − log z,

log zc = c log z + 2nπi (c ∈ C) (See 3.12),
log z1/m = 1

m log z (m ∈ Z, m 6= 0) (See 3.12),

(22)

but some formulas like log z2 = 2 log z are not valid. The meaning of (22) is that both
sides are equal as multivalued functions, that is, the set of values corresponding to
every z are equal. For log z2 = 2 log z, there are common values in both sides, but the
sets of values in both sides are not identical, and the formula fails.

Proof of (22) (the first identity). Letting w1 = Log z1, w2 = Log z2, we have e
w1 = z1,

ew2 = z2. ∴ ew1+w2 = z1z2. ∴ log(z1z2) = w1+w2+2nπi (#1). On the other hand,
log z1+log z2 = w1+2nπi+w2+2mπi = w1+w2+2(m+n)πi (#2). Since (#1) and (#2)
coincide with each other as the sets of values, we have log(z1z2) = log z1 + log z2. �

4A domain without hole is called simply-connected domain. If a point is excluded from a domain,
it is not simply-connected.
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3.10. Radical functions. The inverse function of zn is called a radical function, deb-
ited by n

√
z. It is obtained by solving wn = z. Letting w = seiϕ,

sneinϕ = z. (23)

Taking the absolute values, sn = |z|, s = n
√

|z|. Comparing the arguments, nϕ = arg z.

ϕ = arg z
n = Arg z+2mπ

n (m = 0, . . . , n− 1). Therefore

w = n
√
z = n

√

|z|ei arg z
n = n

√

|z|eiArg z+2mπ
n (m = 0, . . . , n− 1). (24)

Hence n
√
z is multivalued (n-valued). Here, n

√

|z|eiArg z
n is called the principal value of

n
√
z.
A (single-valued branch of a) radical function is also holomorphic in a simply-

connected domain not containing z = 0, its derivative is given by

(

n
√
z
)′

=
1

(wn)′
=

1

nwn−1
=

1

n ( n
√
z)
n−1 . (25)

3.11. Other inverse functions. The inverse functions of trigonometric functions and
hyperbolic functions are denoted by attaching “arc” at the beginning of the function
names. For example, the inverse of sin z is denoted by arcsin z, etc. In general, they
are represented by using logarithms, and thus multivalued. We have

1 : arccos z = i log
(

z +
√
z2 − 1

)

2 : arcsin z = i log
(

−iz +
√
1− z2

)

3 : arctan z = i
2
log i+z

i−z

(26)

(exercise08) Show those formulas.
(answer) We show 1:. Solve cosw = z with respect to w.

cosw = eiw+e−iw

2 = z. Here lettinge−iw = s,

s−1 + s = 2z. ∴ s2 − 2zs+ 1 = 0. ∴ s = z +
√
z2 − 1.

∴ w = arccos z = i log s = i log
(

z +
√
z2 − 1

)

.

(27)

3.12. General powers. For complex numbers z, c (z 6= 0), define zc by

zc = ec log z. (28)

If c is an integer, then zc is single-valued, which coincides with the ordinary c-th power
of z, whereas if c is not an integer, then zc is multivalued. We call ecLog z the principal
value of zc. In this text, denote the principal value of zc by (zc)pv. We have the
following.

zc = (zc)pv e
2cnπi, (z1z2)

c = zc1z
c
2,

(

z1
z2

)c

=
zc1
zc2
, z−c = 1

zc
=
(

1
z

)c
,

(zc1+c2)pv = (zc1)pv (z
c2)pv

(29)

Proof of the first and the second formula.

zc = ec log z = ec(Log z+2nπi) = ecLog ze2cnπi = (zc)pv e
2cnπi.

(z1z2)
c = ec log(z1z2) = ec(log z1+log z2) = ec log z1+c log z2

= ec log z1ec log z2 = zc1z
c
2. �

(30)
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(note) Some formulas such as (i) zc1+c2 = zc1zc2 , (ii) zc1c2 = (zc1)c2 are not valid
in general. They have common values on both sides, but not identical as the sets of
values. (i) is calculated as

zc1+c2 = (zc1+c2)pv e
2(c1+c2)nπi,

zc1zc2 = (zc1)pv e
2c1nπi (zc2)pv e

2c2n
′πi = (zc1+c2)pv e

2c1nπi+2c2n
′πi. (n, n′ ∈ Z)

(31)
Regarding those as the set of values, we see that the left-hand side is included in the
right-hand side. Now for example, letting c1 = m be an integer, c2 = c be a complex
number, we have

zm+c = zmzc. (32)

For (ii), we have

zc1c2 = (zc1c2)pv e
2c1c2nπi, (zc1)c2 = (zc1c2)pv e

2c1c2nπie2c2n
′πi, (33)

and again the left-hand side is included in the right-hand side. In this case, letting
c1 = c be a complex number and c2 = m be an integer, we have

zcm = (zc)m (34)

(exercise09) Calculate the following. (1) Log (−ei).
(

1− π
2 i
)

(2)
(

1 +
√
3i
)i
.

(

e−
π
3
−2nπ+iLog 2

)

(exercise10) Show that z
1
n = n

√
z.

(answer)

z
1
n = e

1
n

log z = e
1
n
(Log |z|+i arg z) = e

1
n
Log |z|ei

arg z
n

= eLog |z|
1
n ei

arg z
n = |z| 1

n ei
arg z

n = n
√

|z|ei arg z
n = n

√
z.

(35)

(exercise11) Let q
p be an irreducible fraction and p ≥ 1. Show that z

q
p has exactly p

distinct values.
(answer) Letting Arg z = θ,

z
q

p = e
q

p
log z = e

q

p
(Log |z|+i arg z) = e

q

p
Log |z|ei

q

p
arg z

= eLog |z|
q
p
ei

q

p
(θ+2mπ) = |z|

q

p ei
q

p
θei

2qm
p
π

(36)

Obviously, (36) takes the same value whenever m increases by p. Hence it suffices to
show that (36) has distinct values for m = 0, 1, 2, . . . , p − 1. Suppose, for 0 ≤ m <
m′ ≤ p− 1, that

ei
2qm
p
π = ei

2qm′

p
π , (37)

then for some integer k,

2qm′

p
− 2qm

p
=

2q(m′ −m)

p
= 2k. (38)

This is contradiction, and the proposition is proved. �

(note) Hereafter, the term function or the symbol such as f(z) represents a single-valued
function (or a function made by choosing one value from a multivalued function), unless
specifically stated otherwise.



CHAPTER 4

COMPLEX INTEGRALSAND

LINE INTEGRALS

⋆ 4 ⋆

keywords: curves, complex integrals, line integrals, estimation lemma,

ML inequality

4.1. Curves. While a curve C on the complex plane is expressed by some equation
of z, it is also expressed by a complex-valued function of a real variable t, that is,
z = z(t) = x(t)+ iy(t) (a ≤ t ≤ b). This expression is called a parametric expression of
a curve C. Here, x(t) and y(t) are continuous real functions. For the curve C, α = z(a)
is called the initial point of C, and β = z(b) is called the terminal point of C, and is
considered to be oriented from the initial point to the terminal point, called a curve
from α to β. A curve with distinct initial and terminal points is called open, while
one with identical initial and terminal points is called closed. For any distinct t1 and
t2 ({t1, t2} 6= {a, b}), if C satisfies z(t1) 6= z(t2), then C is called a simple curve or a
Jordan curve. Intuitively speaking, a simple curve is a curve which does not cross with
itself. A simple closed curve C divides the complex plane into the interior and the
exterior of C. In addition, we can determine whether a simple closed curve is oriented
clockwise or anti-clockwise. Anti-clockwise orientation is defined to be positive, and
clockwise orientation is defined to be negative. For a curve C, the curve made from C
by changing the orientation inversely is denoted by −C.

+ −

C1

C2

C3

C   + C   + C1 2 3

If there exist two curves C1 and C2, and the terminal point of C1 coincides the
initial point of C2, then we can join C1 and C2 naturally, and the resulting curve is
denoted by C1 +C2. Iterating this operation, we can join more than two curves under
the above-mentioned condition. For a curve C : z = z(t) = x(t) + y(t), if both of x(t)
and y(t) are of class C1, then C is called a smooth curve. A curve formed by joining
finitely many smooth curves is called a piecewise smooth curve.

1
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(exercise01) Express a positively oriented circle |z − c| = r in the form z = z(t).
[z = c+ reit (0 ≤ t ≤ 2π)]

4.2. Complex integrals. Let f(z) be a continuous complex function defined in a
domain D. Let C : z = z(t) = x(t) + iy(t) (a ≤ t ≤ b) be a smooth curve from α to β

in D. Now we introduce the complex integral

∫

C

f(z)dz of f(z) along a curve C.

Take several points α = z0, z1, . . . , zn = β on C in this order. Further, take
a point ζk on every interval on C from zk−1 to zk. Then the sequence of points
z0, ζ1, z1, ζ2, z2, . . . , ζn, zn is called a partition of C, denoted simply by ∆. The size |∆|
of the partition ∆ is defined to be |∆| = max1≤k≤n |zk−zk−1|. Denote zk−zk−1 = ∆zk,
and let zk = xk + iyk, ∆zk = ∆xk + i∆yk.

z0

z1 z2

zn−2
zn−1

zn

ζ 1

ζ 2

ζ n−1

ζ n

For a partition ∆ of C, consider the following quantity:

S∆ = S∆(f) =

n
∑

k=1

f(ζk)∆zk. (1)

This takes various values depending on a partition, however, we show that it converges
to some limit as |∆| → 0. First of all, letting z(tk) = zk and z(τk) = ζk on C : z = z(t),

we have a partition ∆̃: a = t0, τ1, t1, . . . , τn, tn = b the interval [a, b]. Here, we assume

that |∆| → 0 implies |∆̃| → 0.

S∆ =

n
∑

k=1

f(ζk)∆zk =

n
∑

k=1

[u(ζk) + iv(ζk)][∆xk + i∆yk]

=
n
∑

k=1

[u(ζk)∆xk − v(ζk)∆yk + iu(ζk)∆yk + iv(ζk)∆xk]

=
n
∑

k=1

u(ζk)∆xk −
n
∑

k=1

v(ζk)∆yk + i
n
∑

k=1

u(ζk)∆yk + i
n
∑

k=1

v(ζk)∆xk

(2)
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Here, the last expression is the sum of four terms, and for convenience, we calculate
the first one,

n
∑

k=1

u(ζk)∆xk =

n
∑

k=1

u(z(τk))[x(tk)− x(tk−1)]

=
n
∑

k=1

u(z(τk))
x(tk)− x(tk−1)

tk − tk−1
(tk − tk−1)

=

n
∑

k=1

u(z(τk))x
′(σk)∆tk (By the mean value theorem)

=

n
∑

k=1

u(z(τk))x
′(τk)∆tk +

n
∑

k=1

u(z(τk))[x
′(σk)− x′(τk)]∆tk,

(3)

where tk − tk−1 = ∆tk. Since |∆| → 0 implies |∆̃| → 0, by the definition of integrals
of real functions, we have

n
∑

k=1

u(z(τk))x
′(τk)∆tk −→

∫ b

a

u(z(t))x′(t)dt (|∆| → 0) (4)

Next consider the second term. Since x′(t) is continuous on the closed interval [a, b], it
is uniformly continuous1 on [a, b]. Hence for any ǫ > 0, taking sufficiently small δ > 0,
it holds that |∆| < δ implies |x′(σk)− x′(τk)| < ǫ. Then letting the maximum value of
|u(z)| on C is M , we have

∣

∣

∣

∣

∣

n
∑

k=1

u(z(τk))[x
′(σk)− x′(τk)]∆tk

∣

∣

∣

∣

∣

< Mǫ(b− a). (5)

Therefore as |∆| → 0,

n
∑

k=1

u(ζk)∆xk −→
∫ b

a

u(z(t))x′(t)dt. (6)

Repeating the above argument,

S∆ −→
∫ b

a

u(z(t))x′(t)dt−
∫ b

a

v(z(t))y′(t)dt

+i

∫ b

a

u(z(t))y′(t)dt+ i

∫ b

a

v(z(t))x′(t)dt

=

∫ b

a

[u(z(t)) + iv(z(t))][x′(t) + iy′(t)]dt

=

∫ b

a

f(z(t))z′(t)dt.

(7)

1For any ǫ > 0, there exists δ > 0 such that |x − y| < δ ⇒ |g(x) − g(y)| < ǫ, then g(x) is called

uniformly continuous. If a function is continuous on the (finite) closed interval, then it is uniformly
continuous there.
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This limit is denoted by

∫

C

f(z)dz, called the complex integral of f(z) along C. By the

definition of S∆,

∫

C

f(z)dz is determined by the function f(z) and the curve C itself,

independent of the parametric expression of C. The curve C is called the contour of
this complex integral.

The integral (6) is written as

∫

C

u(x, y)dx. Similarly, the limit of the second term of

the last expression in (2) is written as −
∫

C

v(x, y)dy. By using this notation, we can

transform a complex integral formally as:
∫

C

f(z)dz =

∫

C

(u(x, y) + iv(x, y))(dx+ idy)

=

∫

C

u(x, y)dx−
∫

C

v(x, y)dy + i

∫

C

u(x, y)dy + i

∫

C

v(x, y)dx

(8)

(exercise02) Let C be |z| = 2 (positive orientation), then calculate

∫

C

dz

z
.

2i

2−2

−2i

0

C

(answer) Since C : z = 2eit (0 ≤ t ≤ 2π), we have
∫

C

dz

z
=

∫ 2π

0

z′(t)

2eit
dt =

∫ 2π

0

2ieit

2eit
dt =

∫ 2π

0

idt = [it]2π0 = 2πi . (9)

4.3. Complex integrals along piecewise smooth curves. We have studied com-
plex integrals along smooth curve C. More generally, if C = C1 + · · ·+Cs is piecewise
smooth and Ck is smooth for k = 1, . . . , s, define

∫

C

f(z)dz =
s
∑

k=1

∫

Ck

f(z)dz. (10)

The right-hand side is considered as the limit of S∆ for a partition ∆ including all
joints of curves. Hence, there is no essential difference between the smooth case and
the piecewise smooth case. In addition, no matter how C is decomposed into curves
as C = C1 + · · ·+ Cs (allowed division at smooth point), (10) holds. For, consider a
partition ∆ of C including all joints of curves and all non-smooth points, and assign it
to the partitions ∆1, . . . ,∆s of the decomposed curves C1, . . . , Cs, then we have

S∆ = S∆1
+ · · ·+ S∆s

. (11)

Letting |∆| → 0, |∆1|, . . . , |∆s| → 0 and we have (10).
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It should be noted that, in (1), if the orientation of C is reversed, then the sign of

∆zk clearly changes, and therefore

∫

−C

f(z)dz = −
∫

C

f(z)dz.

For continuous functions f(z), g(z), from (1) it follows that

S∆(f + g) =

n
∑

k=1

(f(ζk) + g(ζk))∆zk =

n
∑

k=1

f(ζk)∆zk +

n
∑

k=1

g(ζk)∆zk

= S∆(f) + S∆(g).

(12)

Similarly, for a complex constantm, it holds that S∆(mf) = mS∆(f). Letting |∆| → 0,
we have the following formulas.

∫

C

(f(z) + g(z)) dz =

∫

C

f(z)dz +

∫

C

g(z)dz

∫

C

mf(z)dz = m

∫

C

f(z)dz (m ∈ C)

(13)

(For the first formula, the similar formula holds for more than two summands) This is
derived also from (7).

4.4. Line integral with respect to arc length. For f(z), C, a partition ∆ in 4.2,
consider

T∆ = T∆(f) =
n
∑

k=1

f(ζk)|∆zk|, (14)

and the limit of this quantity is called a line integral with respect to arc length, denoted

by

∫

C

f(z)|dz|. By definition, several formulas similar to (10),(13) hold for this integral,

except for

∫

−C

f(z)|dz| =
∫

C

f(z)|dz|, say, this integral is independent of the orientation

of a curve. Also, note that if the length of C be L, then

∫

C

|dz| = L for f(z) = 1.

(This is rather the definition of the length of a curve.)
If a curve C : z = z(t) (a ≤ t ≤ b) is given, in a similar method as for S∆, the limit

of T∆ is calculated (omitted details) as

∫

C

f(z)|dz| =
∫ b

a

f(z(t))|z′(t)|dt. (15)

This integral is often used for the evaluation of

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

.

Theorem 1. (The estimation lemma, ML inequality) Let f(z) be continuous function
and let C be a curve of length L, and let the maximum value of |f(z)| on C be M , then

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

≤
∫

C

|f(z)||dz| ≤ML. (16)
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Proof. From |z+w| ≤ |z|+|w|, it follows that, in general, |z1+· · ·+zn| ≤ |z1|+· · ·+|zn|.
Hence,

∣

∣

∣

∣

∣

n
∑

k=1

f(ζk)∆zk

∣

∣

∣

∣

∣

≤
n
∑

k=1

|f(ζk)||∆zk| ≤
n
∑

k=1

M |∆zk|. (17)

Here, letting |∆| → 0, we have (16). �

(exercise03) Let C be a curve along the right half of the circle |z − 1| = 2, from 1− 2i

to 1 + 2i. Show that

∣

∣

∣

∣

∫

C

z

z − 1
dz

∣

∣

∣

∣

≤ 3π.

1 + 2i

3

1 − 2i

1

C

−1 0

(answer) From this figure, we have, on C,
∣

∣

∣

∣

z

z − 1

∣

∣

∣

∣

=
|z|

|z − 1| =
|z|

|z − 1| ≤
3

2
.

∴

∣

∣

∣

∣

∫

C

z

z − 1
dz

∣

∣

∣

∣

≤ 3

2
· 2π = 3π. �

(18)

(note) Hereafter, as a contour or the boundary of a figure, we use only piecewise smooth
curves unless specifically stated otherwise.



CHAPTER 5

CAUCHY’S INTEGRAL THEOREM

AND INTEGRAL FORMULA

⋆ 8 ⋆

keywords: Green’s theorem, Cauchy’s integral theorem, principle of

deformation of contours, primitive functions, Cauchy’s integral

formula

5.1. Green’s theorem. Let C be a positively oriented simple closed curve,1 let D be
the set consisting of C and the interior of C. Let P (x, y) and Q(x, y) be two-variable
real functions of class C1.

Theorem 1. (Green’s theorem) We have
∫

C

(Pdx+Qdy) =

∫

D

(−Py +Qx)dxdy. (1)

y = ψ(x)

a b x

y

O

dy C
D

d

c

dxx = λ(y)
x = µ(y)

y = ϕ(x)

Proof. For simplicity, C is as depicted below, and the upper half of C is expressed as
y = ψ(x) (a ≤ x ≤ b), and the lower half, y = ϕ(x) (a ≤ x ≤ b); also, the left half is
expressed as x = λ(y) (c ≤ y ≤ d), and the right half, x = µ(y) (c ≤ y ≤ d). We have

1This theorem is usually formulated on the coordinate plane, but it is still valid on the complex

plane. Hereafter, we use curves, domains or figures in the complex plane unless specifically stated
otherwise.

1



2 COMPLEX ANALYSIS

∫

D

(−Py +Qx)dxdy =

∫ b

a

(

∫ ψ(x)

ϕ(x)

− Pydy

)

dx+

∫ d

c

(

∫ µ(y)

λ(y)

Qxdx

)

dy (Fubini)

=

∫ b

a

[−P (x, y)]y=ψ(x)y=ϕ(x) dx+

∫ d

c

[Q(x, y)]
x=µ(y)
x=λ(y) dy

=

∫ b

a

[−P (x, ψ(x)) + P (x, ϕ(x))]dx

+

∫ d

c

[Q(µ(y), y)−Q(λ(y), y)]dy

=

∫

C

P (x, y)dx+

∫

C

Q(x, y)dy (By definition)

=

∫

C

(P (x, y)dx+Q(x, y)dy).

(2)
If C is more complicated, then we decompose D by several horizontal or vertical lines,
and apply this result to each decomposed part to prove this theorem. �

5.2. Cauchy’s integral theorem I. Let C be a simple closed curve, f(z) be a com-
plex function holomorphic on and in the interior of C.

Theorem 2. (Cauchy’s integral theorem I) We have

∫

C

f(z)dz = 0. (3)

Proof. We may suppose the orientation of C is positive. Let D be the set consisting
of C and the interior of C.

∫

C

f(z)dz =

∫

C

(u+ iv)(dx+ idy) =

∫

C

(udx− vdy) + i

∫

C

(vdx+ udy)

=

∫

D

(−uy − vx)dxdy + i

∫

D

(−vy + ux)dxdy (Green)

=

∫

D

(vx − vx)dxdy + i

∫

D

(−vy + vy)dxdy (Cauchy–Riemann)

= 0 �

(4)

This is an important theorem, every forthcoming theorem is derived on the basis of
it. Usually it is called “Cauchy’s integral theorem”, however, to distinguish with the
following corollary (Theorem 3), we added the number to the name.
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5.3. Cauchy’s integral theorem II. Let C be a simple closed curve, and C1, C2, . . . ,
Cs be simple closed curves in C, which are in the exterior of each other. Suppose
all closed curves are positively oriented. Suppose f(z) is holomorphic on C and on
C1, C2, . . . , Cr, and in the domain between these curves.

Theorem 3. (Cauchy’s integral theorem II) We have

∫

C

f(z)dz =

s
∑

k=1

∫

Ck

f(z)dz. (5)

CC1
C2

Cs
1Γ

2Γ

sΓΓ

Proof. Make two paths between Ck and C for every k as in the above figure. Let Γ
be a closed curve obtained by joining C and C1, C2, . . . , Cs. Let Γk be a small closed
curve obtained by joining two paths between Ck and C. Then f(z) is holomorphic on
and in the interior of Γ, and also holomorphic on and in the interior of Γk. Hence by
Cauchy’s integral theorem I,

∫

Γ

f(z)dz +
s
∑

k=1

∫

Γk

f(z)dz =

∫

C

f(z)dz −
s
∑

k=1

∫

Ck

f(z)dz = 0.

∴

∫

C

f(z)dz =

s
∑

k=1

∫

Ck

f(z)dz. �

(6)

(note) As in Theorem 3, if we consider several simple closed contours in the positively
oriented closed contour, then all are positively oriented, unless specifically stated oth-
erwise.

5.4. Principle of deformation of contours.

Theorem 4. (Principle of deformation of contours) Let f(z) be holomorphic in a

simply-connected domain. For a simple curve C from α to β,

∫

C

f(z)dz is determined

by only α and β, independent of the shape of C.

Proof. For simple curves C1, C2 from α to β, consider a simple curve C3 from β to α
not intersecting C1 nor C2 as in the figure. Then f(z) is holomorphic on and in the
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interior of the closed curve C1 + C3, and also holomorphic on and in the interior of
C2 + C3. Therefore by Cauchy’s integral theorem I,

∫

C1+C3

f(z)dz =

∫

C1

f(z)dz +

∫

C3

f(z)dz = 0,

∫

C2+C3

f(z)dz =

∫

C2

f(z)dz +

∫

C3

f(z)dz = 0.

∴

∫

C1

f(z)dz = −
∫

C3

f(z)dz =

∫

C2

f(z)dz. �

(7)

α

β

C2 C1
C3D

Similarly, the following corollary is proved. We also call it the principle of deforma-
tion of contours.

Theorem 4’. Let f(z) be continuous in a domain D. If

∫

Γ

f(z)dz = 0 for any simple

closed curve Γ, then for a simple curve from α to β,

∫

C

f(z)dz is determined by only

α and β, independent of the shape of C.

5.5. Functions represented by the integrals. Let D be a simply-connected do-
main, and let f(z) be holomorphic in D. Fix a point z0 and for a point z in D, take a

curve C from z0 to z in D. Since

∫

C

f(ζ)dζ is determined by only z, denote it by F̃ (z).

Theorem 5. F̃ (z) is holomorphic in D and

F̃ ′(z) = f(z). (8)

z

z0

z + ∆z

D C

Γ
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Proof. Since f(z) is holomorphic in a simply-connected domain, by the principle of

deformation of contours,

∫

C

f(ζ)dζ is determined by only z and z0, independent of the

shape of C. Here, as z0 is fixed, the integral is determined by only z. Hence we can

set

∫

C

f(ζ)dζ = F̃ (z). Take an arbitrary z in D, and for a change ∆z of z, consider a

line segment Γ from z to z +∆z, then we have

1
∆z

[

F̃ (z +∆z)− F̃ (z)
]

= 1
∆z

(
∫

C+Γ

f(ζ)dζ −
∫

C

f(ζ)dζ

)

= 1
∆z

∫

Γ

f(ζ)dζ.

(9)

Here taking the difference between this and f(z), we have
∣

∣

∣

∣

1
∆z

∫

Γ

f(ζ)dζ − f(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

1
∆z

∫

Γ

f(ζ)dζ − 1
∆z

∫

Γ

f(z)dζ

∣

∣

∣

∣

=

∣

∣

∣

∣

1
∆z

∫

Γ

(f(ζ)− f(z))dζ

∣

∣

∣

∣

.

(10)

As f(z) is holomorphic in D, it is of course continuous in D. Thus for any ǫ > 0,
there exists δ > 0 such that |∆z| < δ implies |f(ζ) − f(z)| < ǫ (ζ ∈ Γ). Then by the
estimation lemma,

∣

∣

∣

∣

1

∆z

∫

Γ

(f(ζ)− f(z))dζ

∣

∣

∣

∣

<
1

|∆z| · ǫ · |∆z| = ǫ. (11)

Accordingly, letting ∆z → 0,

1

∆z

[

F̃ (z +∆z)− F̃ (z)
]

=
1

∆z

∫

Γ

f(ζ)dζ −→ f(z) = F̃ ′(z). (12)

Hence F̃ (z) is differentiable at z, and F̃ ′(z) = f(z), where z is arbitrary point in D,

and therefore F̃ (z) is holomorphic in D. �

5.6. Primitive functions. A function F (z) which satisfies that F ′(z) = f(z) is called
a primitive function or indefinite integral of a function f(z). There are many primitive
functions of f(z), however, their differences are only constants, and they are expressed

by one symbol

∫

f(z)dz.2 (This is distinguished from a complex integral by the non-

existence of a suffix to the integral symbol.) If F (z) is one of primitive functions of
f(z), then

∫

f(z)dz = F (z) + c (c is a complex integral constant.) (13)

2In a concrete calculation,

∫
f(z)dz sometimes denotes one of primitive functions. See (16).
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As we saw in Chapter 3, 3.2, 3.3, complex functions satisfy ordinary differential for-
mulas. By the use of them, we have the following indefinite integral formulas.

(i)

∫

(f(z) + g(z))dz =

∫

f(z)dz +

∫

g(z)dz

(ii)

∫

kf(z)dz = k

∫

f(z)dz

(iii)

∫

f(w)dw =

∫

f(g(z))g′(z)dz (w = g(z)) (integration by substitution)

(iv)

∫

f ′(z)g(z)dz = f(z)g(z)−
∫

f(z)g′(z)dz (integration by parts)

(14)
Proof. (i): Let F (z) and G(z) be primitive functions of f(z) and g(z), respectively. The
right-hand side is expressed as F (z)+G(z)+ c. Differentiating it, we have f(z)+ g(z).
Therefore the right-hand side is a primitive function of f(z) + g(z), and it contains an

integral constant. Hence we have (the right-hand side) =

∫

(f(z) + g(z))dz. (iii) The

left-hand side is expressed as F (z) + c. Differentiating it by z, we have f(w)g′(z) =
f(g(z))g′(z). Therefore the left-hand side is a primitive function of f(g(z))g′(z), and it

contains an integral constant. Hence we have (the left-hand side) =

∫

f(g(z))g′(z)dz.

(ii) and (iv) are proved similarly. �

5.7. Primitive functions and complex integrals. From Theorem 5, the following
is derived.

Theorem 6. Suppose f(z) is holomorphic in a simply-connected domain D, and C is
a simple curve in Dfrom z0 to z. Take a primitive function F (z) of f(z), then

∫

C

f(ζ)dζ = F (z)− F (z0). (15)

Proof. Letting

∫

C

f(ζ)dζ = F̃ (z), by Theorem 5, F̃ ′(z) = f(z). Meanwhile, for a

primitive function F (z) of f(z), we have F ′(z) = f(z). Thus
(

F̃ (z)− F (z)
)′

= F̃ ′(z)−
F ′(z) = f(z)−f(z) = 0. Therefore there exists a constant c and F̃ (z)−F (z) = c. Here

F̃ (z0)−F (z0) = 0−F (z0) = c. Hence

∫

C

f(ζ)dζ = F̃ (z) = F (z)+c = F (z)−F (z0). �

(exercise01) Let D : |z| < 3 be a domain, and C be a simple curve from 0 to z in D.

Calculate

∫

C

ζ − 3

ζ + 3
dζ.
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(answer) Since D is a simply-connected domain and f(z) = z−3
z+3 is holomorphic in D,

we have

∫

C

ζ − 3

ζ + 3
dζ = F (z)− F (0) by a primitive function F (z) of f(z).

F (z) =

∫

z − 3

z + 3
dz =

∫
(

1− 6

z + 3

)

dz = z − 6Log (z + 3).

∴

∫

C

ζ − 3

ζ + 3
dζ = z − 6Log (z + 3) + 6Log 3 .

(16)

5.8. Cauchy’s integral formula I. Let Γ be a positively oriented simple closed curve,
f(z) be holomorphic function on and in the interior of Γ. Let c be a point in the interior
of Γ.

Theorem 7. (Cauchy’s integral formula I) It holds that

f(c) =
1

2πi

∫

Γ

f(z)

z − c
dz. (17)

Γ

c Γr

z

Proof. Denote by Γr the circle with the center c and radius r. Take sufficiently small

r > 0 so that Γr could be contained in the interior of Γ. Then f(z)
z−c

is holomorphic on
Γ and on Γr, and in the domain between them. Hence by Cauchy’s integral theorem
II, we have

∫

Γ

f(z)

z − c
dz =

∫

Γr

f(z)

z − c
dz. (18)

Here, we calculate the difference between this and 2πif(c). Since

∫

Γr

dz

z − c
= 2πi,

∫

Γ

f(z)

z − c
dz − 2πif(c) =

∫

Γr

f(z)

z − c
dz −

∫

Γr

f(c)

z − c
dz

=

∫

Γr

f(z)− f(c)

z − c
dz.

(19)

As f(z) is continuous in the interior of Γ, for any ǫ > 0, taking sufficiently small r > 0,
we have |f(z)− f(c)| < ǫ on Γr. Then by the ML inequality,

∣

∣

∣

∣

∫

Γr

f(z)− f(c)

z − c
dz

∣

∣

∣

∣

<
ǫ

r
· 2πr = 2πǫ. (20)
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That is,
∣

∣

∣

∣

∫

Γ

f(z)

z − c
dz − 2πif(c)

∣

∣

∣

∣

< 2πǫ. (21)

Here, as ǫ is an arbitrary positive number, it must hold that

∫

Γ

f(z)

z − c
dz = 2πif(c). (22)

Dividing both sides by 2πi, we have (17). �

This theorem says that if f(z) is holomorphic on and in the interior of Γ, then all
values of f(z) in the interior of Γ is completely determined by its values on Γ, which
is a quite amazing phenomenon.

(exercise02)

For the positively oriented circle Γ : |z − 2| = 2, calculate

∫

Γ

z − 2

(z − 1)(z − 3)
dz.

Γ 1 Γ 3

1 3 420

Γ

(answer) Take Γ1 and Γ3 as in the figure. By Cauchy’s integral theorem II,

∫

Γ

z − 2

(z − 1)(z − 3)
dz =

∫

Γ1

z − 2

(z − 1)(z − 3)
dz +

∫

Γ3

z − 2

(z − 1)(z − 3)
dz. (23)

Here, let z−2
z−3

= f(z) and z−2
z−1

= g(z), then f(z) is holomorphic on and in the interior

of Γ1, and g(z) is holomorphic on and in the interior of Γ3. Hence by Cauchy’s integral
formula I,

(23) =

∫

Γ1

f(z)

z − 1
dz +

∫

Γ3

g(z)

z − 3
dz = 2πif(1) + 2πig(3) = 2πi . (24)
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(exercise03) For the positively oriented circle Γ : |z − 3i| = 4, calculate

∫

Γ

eπz

z2 + 4
dz.

3i

7i

2i

Γ
−i

(answer) Let eπz

z2+4
= eπz

(z+2i)(z−2i)
= f(z). The singularity of f(z) in the interior of Γ is

only z = 2i. Hence let eπz

z+2i
= g(z), then g(z) is holomorphic on and in the interior of

Γ. Therefore by Cauchy’s integral formula I,
∫

Γ

f(z)dz =

∫

Γ

g(z)

z − 2i
dz = 2πig(2i) = 2πi

e2πi

2i+ 2i
= π

2
. (25)



CHAPTER 6

CAUCHY’S INTEGRAL FORMULA II

AND ITS APPLICATIONS

⋆ 6 ⋆

keywords: Cauchy’s integral formula II, Morera’s theorem, maximum

modulus principle, Cauchy’s evaluation formula, Liouville’s theorem,

fundamental theorem of algebra

6.1. Cauchy’s integral formula II. The following is a generalization of Cauchy’s
integral formula I, which is contained as the case of n = 0.

Theorem 1. (Cauchy’s integral formula II) Let D be a domain and f(z) be holomor-
phic in D. Then f(z) is differentiable for arbitrary times, and the n-th derivative of
f(z) is given by

f (n)(z) =
n!

2πi

∫

C

f(ζ)

(ζ − z)n+1
dζ. (1)

Here, C is a positively oriented simple closed curve such that C and its interior is
contained in D, and z is a point in the interior of C.

C

z Γr

ζ

d2
d1

Proof. We prove this theorem by induction on n. Let f(z) be holomorphic in D. Let
C and z be as above. Then by Cauchy’s integral formula I,

f(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ. (2)

This formula shows that (1) is valid for n = 0.

1



2 COMPLEX ANALYSIS

Suppose (1) holds for n− 1, then we have

2πi
(n−1)! · 1

h

[

f (n−1)(z + h)− f (n−1)(z)
]

=
1

h

(
∫

C

f(ζ)

(ζ − (z + h))n
dζ −

∫

C

f(ζ)

(ζ − z)n
dζ

)

=
1

h

∫

C

f(ζ)
(ζ − z)n − (ζ − z − h)n

(ζ − z − h)n(ζ − z)n
dζ

=
1

h

∫

C

f(ζ)
(ζ − z) − (ζ − z − h)

(ζ − z − h)n(ζ − z)n

[

∑n−1
k=0(ζ − z)k(ζ − z − h)n−k−1

]

dζ

=

∫

C

f(ζ)

(ζ − z − h)n(ζ − z)n

[

∑n−1
k=0 (ζ − z)k(ζ − z − h)n−k−1

]

dζ.

(3)

Here, we evaluate the difference between this and n

∫

C

f(ζ)

(ζ − z)n+1
dζ. For simplicity,

write ζ − z = s.
∫

C

f(ζ)

(s− h)nsn

[

∑n−1
k=0 s

k(s− h)n−k−1
]

dζ − n

∫

C

f(ζ)

sn+1
dζ

=

∫

C

f(ζ)

(s− h)nsn+1

[

s
∑n−1
k=0 s

k(s− h)n−k−1 − n(s− h)n
]

dζ

=

∫

C

f(ζ)

(s− h)nsn+1

[

∑n−1
k=0

(

sk+1(s− h)n−k−1 − (s− h)n
)

]

dζ

=

∫

C

f(ζ)

(s− h)nsn+1

[

∑n−1
k=0 (s− h)n−k−1

(

sk+1 − (s− h)k+1
)

]

dζ

=

∫

C

f(ζ)

(s− h)nsn+1

[

∑n−1
k=0 (s− h)n−k−1h

∑k
l=0 s

l(s− h)k−l
]

dζ

= h

∫

C

f(ζ)

(s− h)nsn+1

[

∑n−1
k=0

∑k
l=0 s

l(s− h)n−l−1
]

dζ

(4)

Take sufficiently small r > 0, so that the circle Γr with the center z and radius r,
and the interior of Γr are contained in D. Then if |h| < r, then z + h is contained in
the interior of Γr. Let d1 be the distance between z and C, d2 be the maximum value
of |s| (ζ ∈ C), then we have d1 − r ≤ |s|, |s − h| ≤ d2 + r. Let M be the maximum
value of |f(ζ)| on C, and L be the length of C. By the use of these values, evaluating
the modulus of the last expression of (4),

| · · · | ≤ |h| · M

(d1 − r)2n+1
· n(n+ 1)

2
· (d2 + r)n−1 · L. (5)

Hence letting |h| → 0, we have

2πi
(n−1)! · 1

h

[

f (n−1)(z + h)− f (n−1)(z)
]

−→ n

∫

C

f(ζ)

(ζ − z)n+1
dζ.

∴
1
h

[

f (n−1)(z + h) − f (n−1)(z)
]

−→ n!
2πi

∫

C

f(ζ)

(ζ − z)n+1
dζ = f (n)(z).

(6)

Therefore (1) holds for n, and the induction is completed. �
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As we saw here, a function differentiable once in some domain, is automatically
differentiable arbitrary times there, which is completely different from the real function
case, very mysterious property.
(note) The formula (1) is derived by partially differentiating the integrand on the right-
hand side of (2) n times by z. However, this method is not verified at this stage, and
so we gave the above long proof. For your reference, we introduce a theorem which
assures the properness of the method. A proof of this theorem is given in Chapter 12.

Theorem 2. Let g(z, ζ) a complex function of complex variables z and ζ, where z
runs over a domain D and ζ runs over a curve C. Suppose that g(z, ζ) is continuous,
and for every fixed ζ ∈ C, g(z, ζ) is holomorphic in D as a function of z. Then

f(z) =

∫

C

g(z, ζ)dζ is holomorphic in D and

f ′(z) =

∫

C

∂

∂z
g(z, ζ)dζ. (7)

(exercise01)

For the positively oriented circle C : |z − 3| = 2, calculate

∫

C

Log z

(z − 2)2(z − 4)
dz.

C2 C4

2 4 531

C

(answer) Take C2 and C4 as in the figure. By Cauchy’s integral theorem II,
∫

C

Log z

(z − 2)2(z − 4)
dz =

∫

C2

Log z

(z − 2)2(z − 4)
dz +

∫

C4

Log z

(z − 2)2(z − 4)
dz. (8)

Here, let Log z
z−4 = f(z) and Log z

(z−2)2 = g(z), then f(z) is holomorphic on and in the

interior of C2, and g(z) is holomorphic on and in the interior of C4. Hence by Cauchy’s
integral formula I and II,

(8) =

∫

C2

f(z)

(z − 2)2
dz +

∫

C4

g(z)

z − 4
dz = 2πif ′(2) + 2πig(4)

= 2πi
[

1
z
(z−4)−Log z

(z−4)2

]

z=2
+ 2πiLog 4

4 = Log 2−1
2 πi .

(9)

Hereinafter, we study several applications of Cauchy’s integral formula.
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6.2. Morera’s theorem.

Theorem 3. (Morera’s theorem) Let f(z) be continuous in a domain D. Suppose
∫

Γ

f(z)dz = 0 for every simple closed curve Γ, then f(z) is holomorphic in D.

Proof. Fix a point z0 in D, and for a point z in D, take a curve C in D from z0 to z.

Then by the principle of deformation of contours,

∫

C

f(ζ)dζ is determined by only z,

and so we denote it by F̃ (z). As we saw in Chapter 5, 5.5, F̃ (z) is holomorphic in D,

and F̃ ′(z) = f(z). However, by Section 6.1, every holomorphic function is differentiable

for arbitrary times, and therefore F̃ ′(z) = f(z) is also differentiable in D, that is, f(z)
is holomorphic in D. �

This theorem holds unless D is simply connected. If D is simply connected, this is
considered as the inverse of Cauchy’s integral theorem I.

6.3. Maximum modulus principle.

Theorem 4. (Maximum modulus principle) Let Γ be a simple closed curve, and E be
the set of all points on and in the interior of Γ. Let f(z) be a holomorphic function on
E. Then |f(z)| has global maxima at points on Γ.

Proof. Let c be an arbitrary point in the interior of Γ. Let M be the maximum value
of |f(z)| on Γ, L be the length of Γ, d be the distance between c and Γ. Since (f(z))n

(n = 1, 2, . . . ) is holomorphic on E, we have, by Cauchy’s integral formula I and the
estimation lemma,

|f(c)|n = |(f(c))n| =
∣

∣

∣

∣

1

2πi

∫

Γ

(f(z))n

z − c
dz

∣

∣

∣

∣

≤ 1

2π
· M

n

d
· L.

∴ |f(c)| ≤M
L1/n

(2πd)1/n
−→M. (n→ ∞) �

(10)

(note) |f(z)| has no global maxima at the point in the interior of Γ, unless f(z) is a
constant.
(exercise02) Determine the global maximum of f(z) = ez on |z − i| ≤ 3.
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6.4. Cauchy’s evaluation formula.

Theorem 5. (Cauchy’s evaluation formula) Let Γr be the circle with the center c and
radius r > 0, and f(z) be holomorphic on and in the interior of Γr. Let M be the
maximum value of |f(z)| on Γr. Then we have

∣

∣

∣
f (n)(c)

∣

∣

∣
≤ n!M

rn
. (11)

Proof. By Cauchy’s integral formula II and the estimation lemma,

∣

∣

∣
f (n)(c)

∣

∣

∣
=

∣

∣

∣

∣

n!

2πi

∫

Γr

f(z)

(z − c)n+1
dz

∣

∣

∣

∣

≤ n!

2π
· M

rn+1
· 2πr = n!M

rn
. � (12)

As an application of this theorem, we have he following Liouville’s theorem, and a
further application of it, we have the fundamental theorem of algebra.

6.5. Liouville’s theorem.

Theorem 6. (Liouville’s theorem) Every entire function bounded in the whole complex
plane is necessarily a constant.

Proof. Let f(z) be an entire function bounded in the whole complex plane. Take an
arbitrary point c, and let Γr be the circle with the center c and radius r. Since f(z) is

bounded, there exists a constant M̃ such that |f(z)| ≤ M̃ for every z, and letting the

maximum value of |f(z)| on Γr be M , we have M ≤ M̃ (#). Here, applying Cauchy’s
evaluation formula for n = 1, it holds that

|f ′(c)| ≤ M

r
. (13)

Combining this with (#), we have

|f ′(c)| ≤ M̃

r
. (14)

Then letting r → ∞, we have |f ′(c)| = 0. As c is arbitrary, f ′(z) = 0 in the whole
complex plane. Hence we have f(z) = const. �
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6.6. Fundamental theorem of algebra.

Theorem 7. (Fundamental theorem of algebra) Every algebraic equation with complex
coefficients has at least one solution in the complex plane.

Proof. Take an arbitrary polynomial f(z) = a0z
n + a1z

n−1 + · · ·+ an (n ≥ 1, a0 6= 0)
with complex coefficients, and consider a function:

g(z) =
1

f(z)
=

1

a0zn + a1zn−1 + · · ·+ an
. (15)

Suppose the algebraic equation f(z) = 0 has never complex solutions. Then g(z) is
holomorphic in the whole complex plane, say, an entire function. Letting z → ∞, we
have

|g(z)| =
1

|a0zn + a1zn−1 + · · ·+ an|

=
1

|z|n · 1
∣

∣a0 +
a1
z + · · ·+ an

zn

∣

∣

−→ 0.
(16)

Hence for sufficiently large R, |z| > R implies |g(z)| < 1. In addition, g(z) is holomor-
phic and so it is continuous, thus |g(z)| is also continuous. Therefore |g(z)| has the
maximum value M on |z| ≤ R. Consequently, in the whole complex plane,

|g(z)| ≤ max(1,M), (17)

that is, g(z) is bounded in the whole complex plane. However, f(z) is an entire func-
tion, thus by Liouville’s theorem, f(z) is a constant, which is clearly a contradiction.
Accordingly, f(z) = 0 should have a complex solution. �

Once we accept this theorem, for a polynomial f(z), choosing a complex solution
α1, by the factor theorem, we have

f(z) = (z − α1)f1(z). (18)

Similarly, choosing a complex solution α2 of f1(z), f(z) = (z − α1)(z − α2)f2(z).
Repeating this process gives

f(z) = a0(z − α1)(z − α2) . . . (z − αn). (19)

That is, f(z) is completely factored into linear factors with complex coefficients.


