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LINEAR ALGEBRA EXERCISES

1. Given the three points P (1,−2, 3), Q(4,−4, 1), R(1, 0, 2) in the 3-dimensional
space, answer the following.

(1) Determine S satisfying
−−→
PQ =

−−→
RS .

(2) Determine the center of gravity G of △PQR. (You may use the formula
for the center of gravity.)

(3) Letting the center of gravity of △QRS be H , determine
−−→
GH .

1.1* Given a tetrahedron O − ABC in the 3-dimensional space. If we draw a
line segment between each vertex and the center of gravity of the opposite face,
then show that those four segments meets at one point. (This point is called
the center of gravity of the tetrahedron.)
2. Let k be a real number and a, b, c be 3-dimensional vectors. Show the follow-
ing.

(1) |(a, b)| ≤ ||a|| · ||b|| (2) ||a+ b||2 − ||a− b||2 = 4(a, b)
(3) ||ka|| = |k| ||a|| (4) ||a+ b|| ≤ ||a|| + ||b||
(5) ||a + b+ c||2 − ||a||2 − ||b||2 − ||c||2 = 2[(a, b) + (b, c) + (c, a)]

3. Are the following vectors linearly independent?

(1)





−1
0

−1



,





1
−2
1



,





0
3
0



 (2)





−2
2
3



,





1
2
1



,





0
1
0





4. Letting a =





1
−1
1



, b =





0
−2
1



, c =





0
1

−1



, express the following vec-

tors by linear combinations of a, b, c.

(1)





3
2
1



 (2)





1
−1
1



 (3)





1
−3
2



 (4)





0
0
0





4.1 Letting a =





1
2
3



, b =





1
1
1



, c =





1
0
1



, express x =





x
y
z



 by a linear

combination of a, b, c.

1
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5. Determine the vector equation of the following line (1) in the plane, and lines
(2),(3) in the 3-dimensional space.

(1) 9x+ 4y = 5 (2) − x− 3 = 2y = z (3) 4x+ 3 = 6y + 5 = −2z + 1

6. Determine the vector equation of a line

{
x+ y − 2z = 5
x− y + 3z = 1

.

7. Let θ be the dihedral angle of two planes −x+2y−5z = 8 and −2x−y+3z =
19, then determine sin θ. (The dihedral angle of two planes is the angle of their
normal vectors. If the direction of the normal vector of one plane is changed,
we have another value of θ, but sin θ is uniquely determined.)
8. Determine the equations of the following planes and lines expressed by vector
equations.

(1)





x

y

z



 = t





1

2

1



 + u





2

0

1



 (2)





x

y

z



 =





−1

1

3



 + t





2

2

3



 + u





5

2

−1





(3)





x

y

z



 =





−1

1

2



 + t





2

1

4



 (4)





x

y

z



 =





1

−2

−3



 + t





1

0

9





(5)





x

y

z



 =





3

4

5



 + t





5

0

1



 + u





0

−3

2





9. Rewrite the following equations of planes into vector equations.

(1) x+ 2y − z = 3. (2) 3x+ 2y + z = 0.
(3) 5x− 8z = 25.

10. Calculate the following.

(1)

(
5 15 10

−2 1 2

)




−1 −1
2 −1

−2 2



 (2) AB =





0 1 0
1 0 0
0 0 1









a b c
d e f
g h i





(3) BA

11.* The area S of a parallelogram spanned by two 3-dimensional vectors a =




a
b
c



 and a′ =





a′

b′

c′



 is expressed as S =
√

S2
1 + S2

2 + S2
3 by the areas S1,

S2, S3 of the orthogonal projections to xy, yz, zx planes, respectively. Show
this fact.
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12. For the following linear transformations T of V 3, determine the matrices A
satisfying Tx = Ax (x ∈ V 3). Also, for (1) and (3), calculate An.

(1) T





x

y

z



 =





y

z

x





(2) T





x

y

z



 =





5x− 2y + 3z

3x+ 5y − 2z

−2x+ 3y + 5z





(3) T





x

y

z



 =





2x− y − z

−x+ 2y − z

−x− y + 2z





13. For the following linear transformations T, S of V 3 answer the following:
(1) Determine the matrix A satisfying ST = TA. (2) Determine the matrix B
satisfying TS = TB.

T





x

y

z



 =





3x− 2y − 3z

x+ 2y + 2z

2x− y − 3z



, S





x

y

z



 =





2x− 2y + z

x− 2y + 2z

2x+ 2y − z





14. Consider the 3 × 3 matrix A =





2 −2 3

3 1 2

3 2 1



. For the following line l or

plane S, determine the equation of the images l′ and S′ of l and S, respectively,
under TA. Here, d in (5) is a real constant.

(1)
x

3
= −y − 2 =

z + 1

2
(2) −

x+ 2

10
=

y − 3

3
=

z − 3

12

(3) 3x+ y − 4z = 2 (4) 2x− 3y + 3z = 3
(5) y − z = d

15. Consider the 3 × 3 matrix A =





1 0 1

−1 2 0

0 2 1



. For the following line l or

plane S, determine the equation of the images l′ and S′ of l and S, respectively,
under TA.

(1) 2x = −y = 3z (2) 5x+ 2y + 6z = 0

16. Consider the 3×3 matrix A = k





2 1 1

1 2 1

1 1 2



. Suppose the image of the plane

Sd : x + y + z = d under TA is Sd itself for every real constant d. Determine
the value of k.
17. (1) Let A be a matrix which determines the linear transformation mapping
every point in the x-y plane to the point symmetric to it with respect to the
line l : y = 2x. Determine A.
(2) Solve the similar problem for the line l : y = mx.
18. (1) Let A,B be square matrices of order 2 or 3, then show that |AB| = |A||B|.
(2) Let A be a square matrix of order 2 or 3, then show that |A| = |tA|.
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19. Two matrices A and B are called commutative if it holds that AB = BA.

Determine all matrices
(

x y

z w

)

commutative with the matrix
(

1 0

1 1

)

.

20. Prove the following equalities.

(1)

∣
∣
∣
∣
∣
∣

1 1 1
x y z
x2 y2 z2

∣
∣
∣
∣
∣
∣

= −(x− y)(x − z)(y − z)

(2)

∣
∣
∣
∣
∣
∣

a b c
c a b
b c a

∣
∣
∣
∣
∣
∣

= (a+ b+ c)(a+ ωb+ ω2c)(a+ ω2b+ ωc)

Here, ω = −1+
√
3i

2
. (One of the primitive third root of unity)

21. Let x = (1, 2, . . . , n) and y = (1, t, . . . , tn−1). Calculate the following.

(1) xty (2) txy (3) xtx (4) tyy (5) txyt(txy)

21.1 For a = (a1, . . . , an), b = (b1, . . . , bn), calculate (tab)n.
22. Using block matrices, calculate the following. Here, A is a nonsingular ma-
trix of order 2, and E is the identity matrix of order 2.

(1)





1 2 0

3 4 0

0 0 −1





2

(2)





3 2 1 0

1 0 1 0

0 0 0 2













2 0 0 1

0 2 0 2

0 0 2 1

1 1 1 2









(3)
(

A −E

E A−1

)(

A−1 E − A−1 −E

−E E +A −A

)

23.* Let A be an l × m matrix and B be an m × n matrix, then prove that
t(AB) = tBtA.

24. Let A =
(

P Q

O S

)

be a symmetrically partitioned matrix, where P is r× r,

and S is s× s. Then prove that a necessary and sufficient condition for A to be
nonsingular is that P and S is nonsingular. (You may use the theorem that for
a square matrix M , if MX = E or XM = E holds, then M is nonsingular.)

25.* Let Θθ =
(

cos θ − sin θ

sin θ cos θ

)

. Using block matrices, calculate the following.

(
(cosα) Θθ (− sinα) Θθ

(sinα) Θθ (cosα) Θθ

)(
(cosβ) Θφ (− sinβ) Θφ

(sinβ) Θφ (cosβ) Θφ

)
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26. Using elementary operations, transform the following matrices into the form
(

Er O
O O

)

, and determine the ranks of them. Here, x is a real number.

(1)





6 −1 −1
1 1 1
8 1 1



 (2)









1 2 1 1

−1 −1 −1 1

2 3 4 5

9 8 7 6









(3)









0 0 1 −1

0 0 3 5

2 4 6 8

1 2 5 5









(4)





0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1



 (5)









3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

1 2 3 4 5









(6)











x O 1

x 1

O
. . .

.

.

.

1 1 . . . x











(of order n, n ≥ 2)

27. Determine the inverse matrices of the following matrices. Here, A and B are
nonsingular.

(1)





9 0 0
0 1 2
0 3 5



 (2)





−4 5 0
−1 1 0
0 0 5



 (3)









2 1 0 0

−3 −2 0 0

0 0 3 −5

0 0 1 −2









(4)









2 1 1 0

−3 −2 0 1

0 0 3 −5

0 0 1 −2









(5)









3 −5 0 0

1 −2 0 0

1 0 2 1

0 1 −3 −2









(6)

(
E A
B O

)

28. Applying elementary row operations on (A E), determine the inverse matrix
of A if it is nonsingular. Here, a, b are real numbers satisfying that |a| 6= |b|.

(1)





1 1 2 1 0 0

2 1 3 0 1 0

3 1 2 0 0 1



 (2)







0 0 a −1 1 0 0 0

0 a −1 0 0 1 0 0

a −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1







(3)





7 −8 8 1 0 0

−4 5 −6 0 1 0

1 −2 3 0 0 1



 (4)∗






a 0 0 b 1 0 0 0

0 a b 0 0 1 0 0

0 b a 0 0 0 1 0

b 0 0 a 0 0 0 1







29. For nonsingular n× n matrices A,B, show that (AB)−1 = B−1A−1.

30. For a nonsingular n× n matrix A, show that
(
tA

)−1
= t

(
A−1

)
.

31.* Let n ≥ 2. Calculate the rank of the n × n matrix















1 x x . . . x

x 1 x . . . x
x x 1 . . . x

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

x x x . . . 1















as

follows.
(1) Add all columns except a specified column (e.g. the n-th column) to the

specified column.
(2) After dividing into cases, add a scalar multiple of the n-th column to each

column, and cope with it.
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32. Solve the following linear equations, where x, y, z, w are variables and a is a
constant. (Consider similarly to the multi-equation case.)

(1) x+ ay − az − aw = a
(2) ax+ 0y − 5z − w = 4
(3) 3x+ 2y = z + 4w

33. Solve the following systems of linear equations, where a, b, c are constants.

(1)







x +y +z = 4
y −w = 5

x +y +w = 6
(2)







3x +2y +z −w = 4
2x +y −w = −2
4x +3y +2z −w = 10

(3)







−y +z = −2
5x −y −4z = 3
x −z = 1

(4)







−3x +y −z +w = −8
−2x −2y −2z +3w = −12
3x +y +z −2w = 12

(5)







u +v +w = a
w +x +y = b
y +z +u = c

(6)







y +z +2w = 0
2x +4y +6z +8w = 0
2x +2z = 0

(7)

{
z +2w = 0

x +2y = 0
(8)∗







2x +3y −5z −2w = 9
−2x +2y +3z −5w = −18
−5x −2y +2z +3w = −7
3x −5y −2z +2w = 4

34. Determine a necessary and sufficient condition for the following systems of
linear equations to have a solution, and solve them under the condition. Here,
for (2), suppose abc 6= 0.

(1)







2x +5y +6z = a
x +2y +z = b

3x +5y −z = c
(2)







ax −by = c
by −cz = a

−ax +cz = b

35. Solve the following systems of linear equations, where a, b, c are constants.

(1)







2y +z +w = a
x −z −2w = b
x +2y −w = 2

(2)







2x +2y +2z +w = 2
3x +2y +2z +w = 1
2x +y +z +w = 4

(3)∗
{

x +ay +z −w = 3
x −y −z +bw = 5

(4)∗







bu +v +cw = a
cw +x +ay = b
ay +z +bu = c

36. Let A be a 3×3 matrix, c be a column vector with 3 entries, and x = t(x, y, z).
Hitomi tried to solve the equation Ax = c, and applied elementary operations
to the extended coefficient matrix (A c), then she multiplied the second column
by 2, by mistake. She did not interchange the columns. After all, she has a

solution x =





2

4

6



 + α





1

3

5



. Find the proper solution.
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37. Calculate the following determinants.

(1)

∣
∣
∣
∣
∣
∣

6 1 8
7 5 3
2 9 4

∣
∣
∣
∣
∣
∣

(2)

∣

∣

∣

∣

∣

∣

∣

∣

2 5 2 2

2 2 5 2

2 2 2 5

5 5 5 5

∣

∣

∣

∣

∣

∣

∣

∣

(3)

∣

∣

∣

∣

∣

∣

∣

∣

a 0 0 e

0 b f 0

0 g c 0

h 0 0 d

∣

∣

∣

∣

∣

∣

∣

∣

(4)

∣

∣

∣

∣

∣

∣

∣

∣

a b O

0 a b

0 0 a b

b 0 0 a

∣

∣

∣

∣

∣

∣

∣

∣

(5)

∣

∣

∣

∣

∣

∣

∣

∣

1 3 5 7

2 4 6 8

1 2 0 0

0 0 1 2

∣

∣

∣

∣

∣

∣

∣

∣

(6)

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

∣

∣

∣

∣

∣

∣

∣

∣

(7)

∣

∣

∣

∣

∣

∣

∣

∣

1 14 15 4

12 7 6 9

8 11 10 5

13 2 3 16

∣

∣

∣

∣

∣

∣

∣

∣

38. Determine all the value of the complex number c such that the following
matrices are singular.

(1)

(
c+ 1 −2
−1 c

)

(2)





c −1 1
0 c 2
c 0 1



 (3)





c c c+ 9
c+ 1 c+ 2 c+ 12
0 9 c





(4)









c 1 2 3

1 c+ 2 3 0

2 3 c 1

3 0 1 c+ 2









(5)









c 1 2 3

−1 c 1 2

−2 −1 c 1

−3 −2 −1 c









39. Decompose the following permutations into transpositions, and determine
the signs of the permutations.

(1)

(
1 2 3
3 1 2

)

(2)

(
1 2 3 4
2 3 4 1

)

(3)

(
1 2 3 4 5
4 5 2 1 3

)

40. Calculate the following determinants. (For (1), (2), decompose into factors.
For (5) you may assume that t = 1.)

(1)∗

∣
∣
∣
∣
∣
∣
∣
∣

a b c d
b c d a
c d a b
d a b c

∣
∣
∣
∣
∣
∣
∣
∣

(2)

∣

∣

∣

∣

∣

∣

∣

∣

0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

∣

∣

∣

∣

∣

∣

∣

∣

(3)∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 1 3 . . . 2n− 1

1 x 3 . . . 2n− 1

1 3 x . . . 2n− 1

.

.

.

.

.

.

.

.

.
. . .

.

.

.

1 3 5 . . . x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4)∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5)∗∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t−1
+ tx2 x O

x t−1
+ tx2 x

.
.
.

.
.
.

.
.
.

x t−1
+ tx2 x

O x t−1
+ tx2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸

n

41. Show that the determinant of a skew-symmetric matrix (tA = −A) of odd
order is equal to 0.
42. Given three points (xi, yi, zi) (i = 1, 2, 3) in the 3-dimensional space, not on
the same line, express the equation of the plane containing the three points by
a determinant.
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43. Calculate the following. Here, n = 1, 2, 3, 4 for (3).

(1)





1 2 1
0 1 1
1 0 3





−1

(2)









1 −2 1 1

−1 0 1 1

1 1 0 1

−2 1 1 0









−1

(3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k 1 O

1 k 1

. . .
. . .

. . .

1 k 1

O 1 k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸

n

(4)∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1 1

x1 x2 . . . xn−1 xn

x2

1
x2

2
. . . x2

n−1
x2
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn−1

1
xn−1

2
. . . xn−1

n−1
xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

44. Using the inverse matrix formula A−1 = 1

|A| adj (A), calculate the inverses of

the following matrices.

(1)





2 3 1
3 1 4
1 4 −2



 (2)





3 5 a
2 3 0
2 3 2





45. Solve the following systems of linear equations using Cramer’s rule. Here,
for (2), suppose that a3 + b3 + c3 6= 3abc.

(1)







2x1 −2x2 +3x3 = 0
3x1 +x2 +4x3 = −3

−2x1 +3x2 −5x3 = 3
(2)







ax1 +bx2 +cx3 = 1
cx1 +ax2 +bx3 = 1
bx1 +cx2 +ax3 = 1

46. Let A be a square matrix with integral entries. Show that a necessary and
sufficient condition for A to have an inverse with only integral entries is that
detA = ±1.
47. Show that the diagonal entries of a Hermitian matrix (a complex matrix

satisfying that A∗ ≡ tA = A.) is real numbers.
48. Let X,Y,Z, F be n×n matrices, and define [X,Y ]F = XFY −Y FX. Then
prove the following. (1) [[X,Y ]F , Z]F + [[Y,Z]F ,X]F + [[Z,X]F , Y ]F = O
(2) If F is symmetric (i.e. tF = F ), and X and Y are skew-symmetric (i.e.

tX = −X, tY = −Y ), then [X,Y ]F is skew-symmetric.
49.* Let A be an l ×m matrix and B be an m× n matrix, then show that the
rank of AB does not exceed the rank of A nor the rank of B.
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50. Determine whether the following set V is regarded as a real vector space or
a complex vector space. Answer with reasons.

(1) V =

{




x

yi

1



| x, y ∈ R

}

(2)















xi

y

z + zi

w − wi









| x, y, z, w ∈ R







(3)
{
(

x+ yi

x− yi

)

| x, y ∈ R

}

(4)

{




x

y

x+ y



| x, y ∈ C

}

50.1 Show that several vectors containing 0 are linearly dependent.
50.2 Show that several vectors containing at least two identical vectors are lin-
early dependent.
50.3 Show that the following two conditions (i) and (ii) are equivalent
(i) The vectors a1, a2, . . . , an are linearly dependent.
(ii) One of the vectors a1, a2, . . . , an is expressed as a linear combination of the
other vectors.
50.4 Show that if a1, a2, . . . , an are linearly independent, then any vectors ai1 ,
ai2 , . . . , ais selected from them are also linearly independent.
51. Which are bases of V 3(= R

3)? Answer with reasons.

(1)





1

1

1



,





0

−1

1



,





0

1

−1



 (2)





1

0

3



,





2

−5

1



,





1

3

5





(3)





1

1

1



,





0

−1

1



,





2

−1

5



 (4)





0

1

1



,





0

−1

1



,





2

−1

5





52. Which are subspaces of V 3? Answer with reasons.

(1) A plane x+ 2y − 3z = 0 (2) A plane x+ 2y − 3z = −4
(3) A plane 2x− y − z = 0
(4) A line x− 3 = y − 1 = z/2
(5) A line x/2 = −y/3 = −z (6) {0} (7) V 3

53. [52.] Denote by W1, W2 and W3 the subspaces (1), (3) and (5) above,
respectively.

(1) Find a basis of W1 (2) Find a basis of W2

(3) Find a basis of W3
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54. Given the following subspaces W,X, Y of V 3(= R
3) as follows, determine

bases of the subspaces: (1) W , (2) X, (3) Y , (4) W +X, (5) X+Y , (6) Y +W ,
(7) W ∩X, (8) X ∩ Y , (9) Y ∩W .

W =

{




x

y

z



 ∈ V 3 | x+ y = 0

x+ y + z = 0

}

, X =

{




x

y

z



 ∈ V 3 | x+ 2y − z = 0

}

,

Y =

{




x

y

z



 ∈ V 3 | 2x+ y − z = 0

x− y = 0

}

.

(10) Which of (4), (5), (6) are direct sums?
55. Determine a basis of the following subspace W of C4.

(1)















x

y

z

w









| x+ iy = z + iw






(2)















x

y

z

w









|
x+ iy = z + iw
x = 2iy + 3z + 4iw







56.* Given 3-dimensional vectors: a =





1
3
5



, b =





−1
0
1



, c =





1
1
4



,

d =





2
3

−1



. Let V be the subspace spanned by a and b, let W be the

subspace spanned by c and d. Determine a basis of V ∩W .
57. (1) Let V = V 3 and W = {all 2× 2 real matrices}, then V and W are

regarded as real vector spaces. Define a mapping T : V −→ W by T





x

y

z



 =

(
x y
y z

)

. Prove that T is a linear mapping.

(2) Let Y = {all 2× 2 real symmetric matrices}. Prove that Y is a subspace of
W .
(3) Define a mapping T : V −→ Y by (1). Prove that this T is an isomorphism.
58. Prove that the composition ST of linear mappings T and S is also a linear
mapping.
59. Prove that for a linear mapping T : V −→ V ′, (1) the image and (2) the
kernel of T are subspaces of V ′ and V , respectively.
59.1 Prove that a linear mapping T : V −→ V ′ is determined by the images of
all vectors of a basis of V .
60. For an isomorphism T between vector spaces V and V ′, the inverse of T is
also an isomorphism between V ′ and V . (If a linear mapping is bijective, then
it is called an isomorphism. You may assume that the inverse of a bijection is
also a bijection.)
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61. Find bases of (a) the image and (b) the kernel of the linear mappings deter-
mined by the following matrices.

(1)

(
1 2 1 3
1 3 2 0

)

(2)





2 0 1 2
−2 −1 −2 1
0 −1 −1 3



 (3)







3 −2 −1 2
−1 2 3 −2
−2 −1 2 3
2 0 2 0







(4)













1 2 1 −2 1

1 1 5 1 1

0 0 1 0 1

1 1 4 1 0

0 1 −3 −3 1













62. Determine the matrix A of a linear transformation T of V 3 which mappings
every point to the symmetric point with respect to the following plane S. (1)
x+ 2y − 2z = 0. (2) y = x.
63. Let W be 2-dimensional subspace of V 3 composed of all vectors t(x, y, z)

such that x + y + z = 0. We have two bases of W : E = 〈





1

−2

1



,





2

−1

−1



〉,

F = 〈





1

−1

0



,





0

1

−1



〉.

(1) Determine the matrix P of the base change E → F.

(2) Define a linear transformation T of W by Tx =





2 0 −1

−1 2 0

0 −1 2



x.

(a) Determine the matrix A of T with respect to E.
(b) Determine the matrix B of T with respect to F.
(c) Find a relation satisfied by P , A and B.
64. Let V be the real vector space consisting of all polynomials in t with real
coefficients of degree at most 3. Let W be the real vector space consisting of all
polynomials in t with real coefficients of degree at most 2. Let E = 〈1, t, t2, t3〉
be a basis of V , and F = 〈1, t, t2〉 be a basis of W .
(1) Define a mapping T : V −→ W by T (p(t)) = −p′(1 − t). Show that T is a
linear mapping.
(2) Determine the matrix A of T with respect to E and F.

(3) Define a linear transformation T̃ of V by T̃ (p(t)) = (t+ b)p′(t+ a) (a, b are

constants). Determine the matrix B of T̃ with respect to E.



12 LINEAR ALGEBRA EXERCISES

65. Letting V =
{
(

x y

z w

)

| x, y, z, w ∈ C

}

,

then V is a complex vector space. For a 2 × 2 matrix S =
(

1 i

−i 1

)

, define a

linear transformation T of V by TX = SXS.
(1) Show that T is a linear transformation of V .

(2) Let E = 〈
(

1 0

0 0

)

,
(

0 1

0 0

)

,
(

0 0

1 0

)

,
(

0 0

0 1

)

〉 be a basis of V . Determine

the matrix A of T with respect to E.
(3) Using a basis H of the image of TA and basis G of the kernel of TA, determine

a basis H̃ of the image of T and a basis G̃ of the kernel of T .
66.* For m× n matrices A and B, show that r(A+B) ≤ r(A) + r(B).


