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1.1. 3-dimensional vectors. A vector is a quantity that has both magnitude and
direction. Two or three-dimensional vectors are elementary examples of vectors, which
can be explained similarly, and so we study mainly 3-dimensional vectors in this chap-
ter. Let A and B be two points in the 3-dimensional Euclidean space. An arrow from

A to B is called a 3-dimensional vector or simply a vector, denoted by
−−→
AB . Here, A

and B are called the initial and terminal points of this vector, respectively. The length

of a line segment AB is called the magnitude or length of
−−→
AB . The direction from A

to B is called the direction of
−−→
AB . As we have seen, the vector

−−→
AB has magnitude

and direction, but the information of the location of the vector is ignored. That is,

any two vectors which are mapped to each other by translation are identified. If
−−→
AB

is translated to
−−→
A′B′ as in the figure, then we consider that

−−→
AB =

−−→
A′B′.

Letting A = (x0, y0, z0), B = (x1, y1, z1), by translation, we have A′ = (x0 + a, y0 +
b, z0 + c), B′ = (x1 + a, y1 + b, z1 + c). If we calculate the differences between the
coordinates of the initial and terminal points, and arrange them vertically, we have




x1 − x0

y1 − y0
z1 − z0


 =




(x1 + a)− (x0 + a)
(y1 + b)− (y0 + b)
(z1 + c)− (z0 + c)


 . (1)

Conversely, if the sets of the differences between the coordinates of the initial and
terminal points are the same, then we have

1
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


x1 − x0

y1 − y0
z1 − z0


 =




(x1 + a′)− (x0 + a)
(y1 + b′)− (y0 + b)
(z1 + c′)− (z0 + c)


 . (2)

Hence a = a′, b = b′, c = c′, and so two vectors are mapped to each other by translation,
and therefore they are identified. In summary,

Two vectors are the same.

⇐⇒ Two vectors are mapped to each other by translation.

⇐⇒
The sets of the differences between the coordinates
of the initial and terminal points are the same.

(3)

Accordingly, we may use the differences between the coordinates of the initial and
terminal points to represent a vector, say,

−−→
AB =




x1 − x0

y1 − y0
z1 − z0


 . (4)

This is called the component form of a vector.

1.2. Vector addition. A 3-dimensional vector can take any point as the initial point.
To be exact, for any 3-dimensional vector a and for any point A, there exists a unique

point B such that a =
−−→
AB . Then letting a =

−−→
AB and b =

−−→
BC , we define the sum of a

and b by

a+ b =
−−→
AB +

−−→
BC =

−−→
AC . (5)

That is to say, a+ b is obtained by connecting a and b by moving the initial point of
b to the terminal point of a. The operation + is called (vector) addition. Using the
following figure, we have

a+ b = b+ a (commutative law of addition)
(a+ b) + c = a+ (b+ c) (associative law of addition)

(6)
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The associative law is proved also by calculation easily as follows:

(
−−→
AB +

−−→
BC )+

−−→
CD =

−−→
AC +

−−→
CD =

−−→
AD =

−−→
AB +

−−→
BD =

−−→
AB +(

−−→
BC +

−−→
CD). (7)

By the associative law, any expression such as a1 + a2 + · · ·+ an is independent of the
way of adding parentheses, and therefore parentheses are often omitted.

Let A = (x0, y0, z0), B = (x1, y1, z1) and C = (x2, y2, z2). The identity
−−→
AB +

−−→
BC

=
−−→
AC is rewritten by the component form:




x1 − x0

y1 − y0
z1 − z0


+




x2 − x1

y2 − y1
z2 − z1


 =




x2 − x0

y2 − y0
z2 − z0


 . (8)

Hence we see that every component of
−−→
AC is the sum of the corresponding components

of
−−→
AB and

−−→
BC . Therefore


a1
a2
a3


+




b1
b2
b3


 =




a1 + b1
a2 + b2
a3 + b3


 . (9)

There is a unique special 3-dimensional vector whose magnitude is 0 with no di-
rection, denoted by 0 and called the zero vector. This is a 3-dimensional vector
−−→
AA=





0

0

0



 for an arbitrary point A.

For a 3-dimensional vector
−−→
AB , a 3-dimensional vector

−−→
BA is called the inverse

vector of
−−→
AB , denoted by

−−→
BA = −

−−→
AB . (10)

−
−−→
AB has the same magnitude as

−−→
AB , and has the direction opposite to

−−→
AB . Obvi-

ously, we have the following.

a+ 0 = 0+ a = a

a+ (−a) = (−a) + a = 0
(11)

(exercise01) (1) Calculate
−−→
AB +

−−→
CD +

−−→
BC +

−−→
DE . (2) Prove that

−−−→
A1A2 +

−−−→
A2A3 + · · ·+

−−−−−→
AnAn+1 =

−−−−−→
A1An+1. (12)

(3) Calculate
−−−→
A1A2 +

−−−→
A2A3 + · · ·+

−−−→
AnA1.
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1.3. Scalar multiplication. Let a be a 3-dimensional vector and k be a positive real
number. The scalar multiplication ka of a by k or the scalar multiplication (−k)a of a
by −k is defined by

ka = (A vector with the same direction as a, and of magnitude
k times the magnitude of a.)

(−k)a = (A vector with the direction opposite to a, and of magnitude
k times the magnitude of a.)

(13)

In addition, define 0a = 0, ±k0 = 0. For scalar multiplication, we have

k




a1
a2
a3


 =




ka1
ka2
ka3


 (14)

for every real number k. This is confirmed by the following figure, if k > 0 and for
the z-axis, and the other axes similarly. If k < 0, it suffices to note that the direction
changes to the opposite.

z

y

x

(1)

(k)

(1)

(k)

O

ka3

a3

For addition and scalar multiplication, we have the following. Letting k, l be real
numbers and a, b be 3-dimensional vectors,

k(a+ b) = ka+ kb
(k + l)a = ka+ la
(kl)a = k(la)

(15)

(exercise02) (1) Show the above formulas by the use of the component form. (2) Show
that (−1)a = −a. (3) Show the following.

k(a1 + a2 + · · ·+ an) = ka1 + ka2 + · · ·+ kan
(k1 + k2 + · · ·+ kn)a = k1a+ k2a+ · · ·+ kna

(16)

(note) We often write simply that a+ (−b) = a− b.
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1.4. The magnitude of 3-dimensional vectors. The magnitude of a vector a is

denoted by ||a||. Letting a =





a1
a2
a3



, by Pythagoras’ theorem,

||a|| =
√
a21 + a22 + a23. (17)

A vector of magnitude 1 is called a unit vector. For a 6= 0, 1
||a||a is a unit vector with

the same direction as a.

z

y

x

O

a3

a2

a1

a  + a 
1 2

22

N(0,0,1)

S(0,0,−1)

unit vectors

O

1.5. Inner product. For two 3-dimensional vectors a, b, let the angle of them be θ.
We define the inner product (a, b) of a and b by

(a, b) = ||a|| · ||b|| · cos θ. (18)

Let
−−→
OA= a =




a1
a2
a3


,

−−→
OB= b =




b1
b2
b3


, and apply the law of cosines to △OAB.

b − a

b
a

O

A

B
θ

||b− a||2 = ||a||2 + ||b||2 − 2||a|| · ||b|| · cos θ.

∴ (a, b) = ||a|| · ||b|| · cos θ

= 1
2

(
||a||2 + ||b||2 − ||b− a||2

)

= 1
2

[
(a21 + a22 + a23) + (b21 + b22 + b23)− (b1 − a1)

2 − (b2 − a2)
2 − (b3 − a3)

2
]

= a1b1 + a2b2 + a3b3.
(19)
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If the angle of 3-dimensional vectors a and b is π/2, then they are called orthogonal
or perpendicular, and written as a ⊥ b. If the angle of a and b is 0 or π, that is, these
vectors have the same or opposite direction, then they are called parallel, and written
as a ‖ b. For any vector a, we promise that a ⊥ 0 and a ‖ 0. From the definition of
inner product, we have the following.

a ⊥ b ⇐⇒ (a, b) = 0
a ‖ b ⇐⇒ (a, b) = ± ||a|| · ||b||

(20)

Let k be a real number. Inner product satisfies the following properties.

(a, b) = (b, a)
(a, b+ c) = (a, b) + (a, c), (a+ b, c) = (a, c) + (b, c)

(a, kb) = (ka, b) = k(a, b)
(a, a) ≥ 0 and (a, a) = 0 ⇐⇒ a = 0

(21)

(exercise03) (1) Prove (21). (2) Show the following.

(a, b1 + b2 + · · ·+ bn) = (a, b1) + (a, b2) + · · ·+ (a, bn)
(a1 + a2 + · · ·+ an, b) = (a1, b) + (a2, b) + · · ·+ (an, b)

(22)

(exercise04) Show the following properties concerning the magnitude and the inner
product of vectors.

||a|| =
√

(a, a)
||ka|| = |k| · ||a||
|(a, b)| ≤ ||a|| · ||b|| (Cauchy—Schwarz inequality)
||a+ b|| ≤ ||a||+ ||b|| (triangle inequality)

(23)

(exercise05) Let A,B,C,D be 4 points in the 3-dimensional space. Show the following.

AB2 + CD2 = AD2 +BC2 ⇐⇒
−−→
AC ⊥

−−→
BD (24)

1.6. Vector equations of lines in the 3-dimensional space. For a point P in the

3-dimensional space, a vector
−−→
OP is called the position vector of P . Let l be a line

in the 3-dimensional space. An equation which express the position vector
−−→
OP = x

for every point P (x, y, z) on l is called the vector equation of the line l. To construct
this equation, we need the direction vector a of l, which is a vector parallel to l, and

the position vector of a point P0(x0, y0, z0) on l. Then we have
−−→
P0P = t a using real

number t, and thus
−−→
OP =

−−→
OP0 + t a or

x = x0 + t a.
(25)

This equation is called the vector equation of l, which is often given by the component
form: 


x
y
z


 =




x0

y0
z0


+ t




a1
a2
a3


 . (26)



LINEAR ALGEBRA 7

(exercise06) Let l be a line passing (1,−2, 3), and parallel to





−1
3

2



. Find the vector

equation of l.

P

a

x P0

x0

O

x

y

z

l (ell)

1.7. Equations of lines in the 3-dimensional space. Let a1, a2, a3 be nonzero real
numbers. By the vector equation (26) of l, we have





x = x0 + ta1
y = y0 + ta2
z = z0 + ta3

; ∴





t = x−x0

a1

t = y−y0

a2

t = z−z0
a3

(27)

From this, it follows that

x− x0

a1
=

y − y0
a2

=
z − z0
a3

. (28)

Conversely, putting each side of (28) equal to t, we go back

(28)⇒ (27)⇒ (26)

and get the vector equation of l. Therefore we see that l is represented by (28), which
is called the equation of l.
(note) If some of a1, a2, a3 are equal to 0, since it is impossible to divide by zero,
another equation is derived. For example, the cases a2 = 0 and a1 = a3 = 0 implies
the following equations, respectively.





x− x0

a1
=

z − z0
a3

y = y0

;

{
x = x0

z = z0
(29)

(exercise07) Transform the following vector equation and (ordinary) equation of a line
into an (ordinary) equation and a vector equation, respectively.




x
y
z


 =




1
−2
3


+ t



−1
3
2


 (30)
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x− 1

−1
=

y + 2

3
=

z − 3

2
(31)

1.8. Linear combination. We often express a 3-dimensional vector in terms of other
3-dimensional vectors. This expression may contain only two operations: addition and
scalar multiplication as follows.

k1a1 + k2a2 + · · ·+ knan (32)

This is called a linear combination of vectors a1, a2, . . . , an.

Three vectors e1 =





1

0
0



, e2 =





0

1
0



, e3 =





0

0
1



 are called elementary vectors.

Every 3-dimensional vector is expressed as a linear combination of elementary vectors
as follows. 


x
y
z



 = xe1 + ye2 + ze3. (33)

There exists other set of vectors which can express every vector. In general, any 3
vectors which can not be contained simultaneously in any plane, are called linearly
independent. Given linearly independent 3 vectors, every 3-dimensional vector is ex-
pressed as a linear combination of them. If vectors are not linearly independent, then
they are called linearly dependent. That is to say, 3 vectors are linearly dependent if
they can be contained in some plane. In other words, they are linearly dependent if
some vector of them is expressed as a linear combination of the rest vectors. Linearly
dependent 3 vectors can not express all vectors.

(exercise08) Let a =





2
1

0



, b =





0
2

1



, c =





1
0

2



. Express x =





x

y

z



 as a linear

combination of a, b, c.

(answer) x = 4x+y−2z
9

a+ −2x+4y+z
9

b+ x−2y+4z
9

c.
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2. PLANES IN THE 3-DIMENSIONAL SPACE AND ITS EQUATIONS

⋆ 3 ⋆

keywords: vector equations of planes, normal vectors, equations of
planes
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Figure 1

2.1. Vector equations of planes in the 3-dimensional space. Let S be a plane
in the 3-dimensional space. Let P0(x0, y0, z0) be a point on S, and its position vector

be
−−→
OP0 = x0. Take two non-parallel vectors b and c contained in S. Let P (x, y, z)

be an arbitrary point on S and
−−→
OP = x be its position vector. Since

−−→
P0P = t b + u c

(t, u ∈ R), we have
−−→
OP =

−−→
OP0 + t b+ u c or

x = x0 + t b+ u c.
(1)

Also, every point P expressed as above is always on S. Hence (1) is called the vector
equation of S. (See Figure 1) In concrete problems, (1) is written using component
form as follows. 


x
y
z



 =




x0

y0
z0



+ t




b1
b2
b3



+ u




c1
c2
c3



 (2)

(exercise01) Let S be a plane which contains a point (3, 2,−1) and suppose two vectors




2

−2
3



,





1

0
2



 are contained in S. Determine the vector equation of S.

1
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2.2. Equations of planes in the 3-dimensional space. Let us find the ordinary
equation of a plane S. A vector which is perpendicular to a plane S is called the normal
vector to S. Let a be the normal vector to S. Similarly to Section 1, let P0(x0, y0, z0)
be a point on S, and P (x, y, z) be an arbitrary point on S. Since a is the normal vector
to S, we have

(a,
−−→
P0P ) = 0. (3)

Conversely, any point P satisfying (3) is always on S. Then letting a =





a

b

c



 and

rewrite (3) as

(a,
−−→
P0P ) = (




a
b
c


,




x− x0

y − y0
z − z0


) = 0. (4)

∴ a(x− x0) + b(y − y0) + c(z − z0) = 0 . (5)

This is the equation of a plane S.

Theorem 1. The equation of a plane in the 3-dimensional space with the normal

vector





a

b

c



 passing through a point (x0, y0, z0) is (5).

Next, given the vector equation of a plane S, we modify this equation to be the
ordinary equation of S. To do this, it suffices to determine the normal vector to S. For
this purpose, find a vector a which is perpendicular to both of two vectors b and c, by

the vector product b × c, etc. Then a is perpendicular to arbitrary
−−→
P0P = t b + u c.

Indeed,

(a,
−−→
P0P ) = (a, t b+ u c) = t(a, b) + u(a, c) = 0. (6)

Hence a is the normal vector to S. The rest to do is to find a point P0 on S to give
the equation (5) of S.

The equation (5) of a plane is often written in the form:

ax+ by + cz = d. (7)

Indeed, (5) is easily modified to (7). Conversely, for given (7), taking some (x, y, z) =
(x0, y0, z0) which satisfies (7), we have

ax0 + by0 + cz0 = d (8)

and (7)−(8) gives (5).
(exercise02) Let S be a plane expressed by the vector equation:




x
y
z


 =




2
−3
1


+ t




1
1
2


+ u




3
−1
0


. (9)

Determine the equation of S. (ans) x+ 3y − 2z = −9.
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2.3. Converting the equation of a plane to the vector equation. Given the
equation of a plane, let us find the vector equation of it. Let S be a plane and
ax+by+cz = d be the equation of S. First we find some point P0(x0, y0, z0) on S, and

let its position vector be x0. The normal vector to S is a =





a

b

c



, and note that the

vectors which are perpendicular to it should be contained in S by translation. Then
taking non-parallel two vectors b and c which are perpendicular to the normal vector
a, and we have the vector equation of S:

x = x0 + t b+ u c. (10)

The key is to find non-parallel two vectors perpendicular to the normal vector.

(exercise03) Determine the vector equation of a plane expressed by x+ 3y − 2z = −9.

(note) The equation of a plane in the form ax+by+cz = d is uniquely determined up to
constant multiples. However, the vector equation of a plane is not uniquely determined
because there are infinitely many choice of non-parallel two vectors contained in the
plane.
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3. LINEAR INDEPENDENCE OF 3-DIMENSIONAL VECTORS AND THE
VOLUMES OF PARALLELEPIPEDS

⋆ 4 ⋆

keywords: linear independence, linear dependence, parallelepiped,
vector products, 3× 3 matrix determinants

3.1. Linear independence. Suppose three 3-dimensional vectors a, b, c have the same
initial point. If a, b, c are not contained in any plane, then they are called linearly in-
dependent. If they are contained in some plane, then then they are called linearly
dependent. A necessary and sufficient condition for three vectors to be linearly depen-
dent is that some vector of them is expressed as a linear combination of the rest two
vectors. Indeed, in that case, clearly they are contained in some plane, and conversely,
if they are contained in some plane, it is clear that some vector of them is expressed
as a linear combination of the rest.

O
a

bc

a x b

h

A

B

C

Figure 2

3.2. Parallelepipeds. Although we know about all the above mentioned, it is some-
times difficult to determine whether three vectors are linearly independent or not. In
such a case, it is useful to consider the volume of a parallelepiped. Suppose there exist
three vectors a, b, c as in the above figure. A hexahedron with these vectors as edges,
such that every two faces facing each other are parallel, is called the parallelepiped
spanned by a, b and c. If those three vectors are linearly independent, then the poly-
hedron never collapses and it has nonzero volume, and if those vectors are linearly
dependent, then the polyhedron collapses and it has no volume. Therefore we can
determine linear independence by the volume of parallelepipeds.

So let us study the volume V of the parallelepiped spanned by a, b and c. For this
purpose, we introduce the vector products of two 3-dimensional vectors.

1
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3.3. Vector products. Suppose that two 3-dimensional vectors a =





a1
a2
a3



 and

b =





b1
b2
b3



 have the same initial point. Let S be the area of the parallelogram

spanned by a and b (with a and b as edges). Let θ be the angle between a and b. A
vector of magnitude S, which is perpendicular to the parallelogram, directed by the
right-hand rule,1 is called the vector product (cross product) of a and b denoted by
a× b. Here we have

S2 = ||a||2 · ||b||2 · sin2 θ = ||a||2 · ||b||2 · (1− cos2 θ) = ||a||2 · ||b||2 − (a, b)2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= · · · = (a2b3 − a3b2)
2 + (−a1b3 + a3b1)

2 + (a1b2 − a2b1)
2.

(1)

In this way, we have calculated the area S. Then we can define the vector product
a× b as follows.

a× b =




a1
a2
a3


×




b1
b2
b3


 =




a2b3 − a3b2
−a1b3 + a3b1
a1b2 − a2b1


 (2)

Indeed, it is clear that ||a × b|| = S. Also we see that (a × b, a) = (a × b, b) = 0,
and therefore a × b is perpendicular to the parallelogram spanned by a and b. For
confirmation,

(a× b, a) = (a2b3 − a3b2)a1 + (−a1b3 + a3b1)a2 + (a1b2 − a2b1)a3 = 0. (3)

Similarly, we have (a×b, b) = 0. In addition, we can confirm that the direction of a×b
satisfies the right-hand rule. In the case of e1×e2 = e3, it is clear. In general, for given
a×b, we transform e1 and e2 into a and b, respectively, continuously, keeping a and b

are not parallel along the way. Then e1×e2 is transformed keeping perpendicular to the
parallelogram spanned by e1 and e2 and never becomes 0 along the way. Consequently,
a×b still satisfies the right-hand rule. Therefore the right-hand side of (2) is certainly
the vector product of a and b.

One way to remember the formula (2) is that put a and b side by side to make




a1 b1
a2 b2
a3 b3



. The i-th component of the vector product a × b is made by hiding the

i-th row and calculate the rest determinant of 2 × 2 matrix. Here, note that, for the
second component, we should inverse the signature.

(exercise01) Confirm that (a× b, b) = 0.

(exercise02) For several i, j, calculate ei × ej . Also, calculate





2
−1

3



×





2
2

5



.

1A right screw is put on the initial point of a and b, so that the screw is perpendicular to both a

and b, then the direction of a × b is the one in which the screw advances if it is rotated from a to b

by the angle θ.
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It is confirmed by (2) that the following laws of vector product hold. (1: is clear by
the right-hand rule.)

1: a× b = −(b× a)
2: a× (b+ c) = a× b+ a× c

3: (a+ b) × c = a× c+ b× c

4: (ka)× b = a× (kb) = k(a× b)

(4)

(exercise03) Show these laws.
Proof of 2:.

a× (b+ c) =




a1
a2
a3



×




b1 + c1
b2 + c2
b3 + c3



 =




a2(b3 + c3)− a3(b2 + c2)
−a1(b3 + c3) + a3(b1 + c1)
a1(b2 + c2)− a2(b1 + c1)





=




a2b3 − a3b2
−a1b3 + a3b1
a1b2 − a2b1


+




a2c3 − a3c2
−a1c3 + a3c1
a1c2 − a2c1


 = a× b+ a× c.

(5)

3.4. Volumes of parallelepipeds and 3× 3 matrix determinants. Using vector
products, the volume V of a parallelepiped is calculated. For the parallelepiped in
Figure 2, the bottom area S is calculated as S = ||a × b||. Here, let h be the height
of the parallelepiped, then V = S · h. However, since the vector product a × b is
perpendicular to the bottom, letting ϕ be the angle between a× b and c, we have

V = S · ||c|| cosϕ = ||a× b|| · ||c|| cosϕ = (a× b, c). (6)

In this way, V is expressed by the vector product and inner product. The right-hand
side of (6) has, exactly speaking, negative values ((−1)× volume) when π/2 < ϕ ≤ π,
thus it represents the signed volume of the parallelepiped. In addition, (6) is the
definition of 3× 3 (matrix) determinants, say,

∣∣ a b c
∣∣ =

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= (a× b, c) =

a1b2c3 + a2b3c1 + a3b1c2
−a1b3c2 − a2b1c3 − a3b2c1

. (7)

Accordingly, we have the following.

Theorem 1. A necessary and sufficient condition for 3 vectors a, b, c to be linearly
independent is that

∣∣ a b c
∣∣ 6= 0.

(note) The expansion formula which expands a 3 × 3 determinant by the rightmost-
hand side of (7) is called Sarrus’ rule. The following illustration helps you to remember
it.
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a2

b1

b2

b3

c1

c2

c3

a1

a3

+

+ + − −

−

(exercise04) Let a =





1

2

3



, b =





4

5

6



 and c =





7

8

t



. Represent the necessary and

sufficient condition for these vectors to be linearly independent by an expression with
respect to t.

(ans)

∣

∣

∣

∣

∣

∣

1 4 7

2 5 8

3 6 t

∣

∣

∣

∣

∣

∣

= 1 · 5 · t+2 · 6 · 7+3 · 4 · 8− 1 · 6 · 8− 2 · 4 · t− 3 · 5 · 7 = −3t+27 6= 0.

∴ t 6= 9 .
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4. 3× 3 MATRICES AND LINEAR TRANSFORMATIONS OF V 3

⋆ 5 ⋆

keywords: 3× 3 matrices, V 3, linear transformations, linearity,
composition, linear transformations determined by matrices, matrix

transformations, image of a figure by a linear transformation

4.1. 3× 3 matrices. A square array of 9 real numbers with 3 rows and 3 columns is
called a 3 × 3 real matrix. For simplicity, we use a term “3 × 3 matrix”. Actually, a
3× 3 matrix is the following square array of real numbers:




a11 a12 a13
a21 a22 a23
a31 a32 a33


 (1)

Let us denote it by the upper case letter A. Define the multiplication or product of a
3× 3 matrix A and a 3-dimensional vector x by




a11 a12 a13
a21 a22 a23
a31 a32 a33






x
y
z


 =




a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z


 (2)

Furthermore, the (matrix) multiplication or (matrix) product of 3× 3 matrices A and
B is defined as follows. (Sorry, little bit complicated!)



a11 a12 a13
a21 a22 a23
a31 a32 a33








b11 b12 b13
b21 b22 b23
b31 b32 b33



 =




a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33





(3)
Let A,B and C be 3 × 3 matrices, x, y be 3-dimensional vectors, and k be a real

number. Then the following laws of multiplication of matrices or of a matrix and a
vector hold.

(AB)C = A(BC) (associative law)
(AB)x = A(Bx) (associative law)
A(x+ y) = Ax+ Ay (distributive law)
A(kx) = k(Ax)

(4)

(exercise01) Show the above laws.

1
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4.2. V 3. Denote by V 3 the set of all 3-dimensional vectors. By mapping every point
in the 3-dimensional space to its position vector, V 3 can be regarded as the set of
all points in the 3-dimensional space, say, the 3-dimensional space itself. In this way,
every 3-dimensional figure is represented as some set of 3-dimensional vectors. Vector
equations of planes or lines are examples of them.

V 3 = {The set of all 3-dimensional vectors} =









x
y
z


 | x, y, z ∈ R




 (5)

4.3. Linear transformations of V 3. Amapping (function) T from V 3 to itself, which
maps every element x of V 3 to some element T (x) of V 3, is called a transformation of
V 3. Here, for simplicity, T (x) is sometimes written as Tx. In particular, if T has the
following property “linearity”, T is called a linear transformation of V 3.

T (x+ y) = Tx+ Ty (x, y ∈ V 3)

T (kx) = k(Tx) (x ∈ V 3, k ∈ R)
(6)

From the first formula, we have

T (x+ y+ z) = T ((x+ y) + z)
= T (x+ y) + Tz = Tx+ Ty+ Tz.

(7)

Similarly, a linear transformation T satisfies that

T (x1 + · · ·+ xn) = Tx1 + · · ·+ Txn. (8)

Let T and S be two transformations of V 3, then the composition S ◦T is defined as

(S ◦ T )x = S(Tx) (x ∈ V 3). (9)

S ◦ T is sometimes written simply as ST .

Theorem 1. If T and S are linear transformations of V 3, then ST is also a linear
transformation of V 3.

Proof. For every x, y ∈ V 3 and k ∈ R,

(ST )(x+ y) = S(T (x+ y)) = S(Tx+ Ty) (By linearity of T )
= S(Tx) + S(Ty) (By linearity of S)
= (ST )x+ (ST )y,

(ST )(kx) = S(T (kx)) = S(kTx) (By linearity of T )
= kS(Tx) (By linearity of S)
= k(ST )x. �

(10)
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4.4. 3 × 3 matrices and linear transformations. For a 3 × 3 matrix A, define a
linear transformation TA as follows.

TA(x) = Ax (x ∈ V 3) (11)

TA is called the linear transformation (matrix transformation) of V 3 determined by A.
In other words, TA is a linear transformation defined by the multiplication of A and
vectors. If a linear transformation T is expressed as T = TA for some matrix A, then
A is called the matrix of a linear transformation T .

It is clear from the third and fourth formulas of (4) that TA satisfies the linearity
property (6). In fact, the converse is valid.

Theorem 2. Let T be a linear transformation of V 3. Then there exists a 3×3 matrix
A such that T = TA.

Proof. Suppose T satisfies (6). It suffices to show that there exists a 3 × 3 matrix A

such that for every x =





x

y

z



, Tx = TA(x). Letting the elementary vectors in V 3 be

e1, e2 and e3, we have

Tx = T (xe1 + ye2 + ze3) = T (xe1) + T (ye2) + T (ze3) (12)

= xTe1 + yTe2 + zTe3. (13)

Here, letting Tej =





a1j
a2j
a3j



 (j = 1, 2, 3), we have

(13) = x




a11
a21
a31



+ y




a12
a22
a32



+ z




a13
a23
a33



 =




a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z





= Ax = TA(x). �

(14)

(exercise02) Let T be a linear transformation defined by the following. Determine a
matrix A satisfying that Tx = Ax (x ∈ V 3).

(1) T





x

y

z



 =





x

y

z



. (2) T





x

y

z



 =





2y + 3z
3z + 2x

2x+ 3y



. (15)

Theorem 3. For linear transformations TA, TB of V 3, it holds that

TATB = TAB . (16)

Proof. For every x ∈ V 3, we have

(TATB)x = TA(TB(x)) = TA(Bx) = A(Bx)
= (AB)x = TAB(x). �

(17)

This theorem shows that the composition of linear transformations determined by
matrices is determined by the product of matrices.
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4.5. Images of planes and lines by TA. Take a 3× 3 matrix A. If V 3 is regarded
as the set of all points in the 3-dimensional space, then a plane S in the 3-dimensional
space is regarded as a subset of V 3. The set

TA(S) = {Ax | x is the position vector of a point on S} (18)

is called the image of S by (under) TA, or the figure onto which S is mapped by
TA. When S is a line or something, definition of TA(S) is very similar. Using vector
equations, we can determine TA(S) explicitly.

x Ax

S
TA

O

(S)TA

(exercise03) Let A =





1 1 0

2 −1 2
0 1 1



. Determine the equation of the image S′ of a

plane S : x+ 2y + 3z = 4 by TA.

(ans) The normal vector to S is





1
2

3



. Two vectors





2
−1

0



,





3
0

−1



 are perpendic-

ular to the normal vector. S contains a point (1, 0, 1). Hence the vector equation of S
is the following.

x =




1
0
1


+ t




2
−1
0


+ u




3
0
−1


. (t, u ∈ R) (19)

Therefore the vector equation of S′ is the following.

x′ = Ax =





1 1 0

2 −1 2
0 1 1





[




1

0
1



+ t





2

−1
0



+ u





3

0
−1





]

=





1 1 0
2 −1 2

0 1 1









1
0

1



 + t





1 1 0
2 −1 2

0 1 1









2
−1

0



+ u





1 1 0
2 −1 2

0 1 1









3
0

−1





=





1
4

1



+ t





1
5

−1



 + u





3
4

−1



.

(20)
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Next we transform it into the equation. The normal vector to S′ is



1
5
−1


×




3
4
−1


 =



−1
−2
−11


 −→




1
2

11


 . (21)

S′ contains (1, 4, 1). Hence the equation of S′ is x− 1 + 2(y − 4) + 11(z − 1) = 0 ,

i.e. x+ 2y + 11z = 20 .

(exercise04) Let A be as above. Determine the equation of the image l′ of a line l :
x−1
4 = y−2

5 = z−3
6 by TA.

(ans) Letting x−1
4

= y−2
5

= z−3
6

= t (or since the direction vector of l is





4
5

6



 and l

contains (1, 2, 3)), the vector equation of l is as follows.

x =




1
2
3



+ t




4
5
6



 . (t ∈ R) (22)

Hence the vector equation of l′ is

x′ = Ax =




1 1 0
2 −1 2
0 1 1








1
2
3


+ t




4
5
6






=




1 1 0
2 −1 2
0 1 1








1
2
3



+ t




1 1 0
2 −1 2
0 1 1








4
5
6





=




3
6
5


+ t




9
15
11


 .

(23)

Eliminating t (or since the direction vector of l′ is





9

15
11



 and l contains (3, 6, 5)), we

have the equation of l′: x−3
9 = y−6

15 = z−5
11 .



⋆

5. MATRIX OPERATIONS AND ELEMENTARY OPERATIONS ON
MATRICES

⋆ 13 ⋆

keywords: complex matrices, real matrices, row vectors, column
vectors, transpose, matrix addition, sum, scalar multiplication, matrix
multiplication, product, diagonal matrices, scalar matrices, identity
matrix, zero matrix, block (partitioned) matrices, inverse matrix,
nonsingular (invertible) matrices, trace, elementary matrices,

elementary operations, rank, canonical form, inner product, normal
matrices, Hermitian matrices, symmetric matrices, alternative matrices,

unitary matrices, orthogonal matrices

5.1. m × n matrices. A horizontal array of numbers or symbols is called a row, and
a vertical array of numbers or symbols is called a column. A rectangular array (1)
of numbers consisting of m rows and n columns is called an m × n (read “m by n”)
matrix. The dimensions of an m× n matrix is defined to be m× n, the number of its
rows and the number of its columns. The rows of the matrix are called the first row,
the second row, . . . , and the m-th row from top to bottom, and the columns of the
matrix are called the first column, the second column, . . . , and the n-th column from
left to right. 



a11 a12 a13 . . . . . . . . . a1n
a21 a22 a23 . . . . . . . . . a2n
a31 a32 a33 . . . . . . . . . a3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 am2 am3 . . . . . . . . . amn




(1)

The individual items in a matrix is called its entries or elements. In particular, the
entry on the intersection of the i-th row and the j-th column of a matrix is called its
(i, j) entry. A matrix with complex number entries is called a complex matrix, whereas
a matrix with real number entries is called a real matrix. By definition a real matrix is
a complex matrix. An n× n matrix is also called a square matrix of order n, or more
simply, a matrix of order n, whose dimension is defined to be n.

An m × 1 matrix is called a column vector with m entries, and a 1 × n matrix is
called a row vector with n entries. A vector with complex/real number entries is called
a complex/real vector. Accordingly, vectors are special cases of matrices. A 1 × 1
matrix is considered as an ordinary number (scalar).

1
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We usually denote the matrix (1) by A. If the entries are bij , we denote it by B.
For simplicity, we use the notation:

A = (aij) (1 ≤ i ≤ m, 1 ≤ j ≤ n). (2)

This means that A is a matrix with (i, j) entry aij . The parenthesised item at end of
(2) can be omitted if confusion does not occur. For convenience, we sometimes change
the suffices as A = (ajk), etc, which has the same meaning.

Two matrices A and B are identical, i.e. A = B, if they have the same dimension
and the same (i, j) entries for every i, j.

For an m × n matrix A = (aij), the n×m matrix B = (bij), bij = aji is called the
transpose of A, denoted by B = tA or AT . The j-th row of tA is the transpose of the
j-th column of A, and the i-th column of tA is the transpose of the i-th row of A. For
example,

(
4 5 6
7 8 9

)T

=




4 7
5 8
6 9



 . (3)

It is clear that t(tA) = A.
It is sometimes convenient to decompose (1) into row or column vectors. Letting

aj =




a1j
...

amj


 , a′i =

(
ai1 ai2 . . . ain

)
; (4)

we have

A =
(
a1 a2 . . . an

)
, A =




a′1
...
a′m


 . (5)

5.2. Matrix addition and scalar multiplication. Matrix addition and scalar mul-
tiplication of matrices are defined similarly to 3-dimensional vectors. Let A = (aij)
and B = (bij) be m× n matrices, then the sum A+B of A and B (addition of A and
B) is defined to be the following m× n matrix.









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . . . . .

am1 am2 . . . amn









+









b11 b12 . . . b1n
b21 b22 . . . b2n
. . . . . . . . . . . . . . . . . . . . . .

bm1 bm2 . . . bmn









=









a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 + bm1 am2 + bm2 . . . amn + bmn









(6)

Let k be a scalar, then the scalar multiplication kA of A by k is defined to be the
following m× n matrix.

k









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . . . . .
am1 am2 . . . amn









=









ka11 ka12 . . . ka1n
ka21 ka22 . . . ka2n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
kam1 kam2 . . . kamn









(7)
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It is easily confirmed that the following laws of matrix addition and scalar multiplica-
tion hold.

A+B = B + A (commutative law)
(A+B) + C = A+ (B + C) (associative law)
k(A+B) = kA+ kB
(k + l)A = kA+ lA
(kl)A = k(lA)

(8)

An m × n matrix with only 0 entries is called a zero matrix, denoted by Omn or O.
It is clear that A + O = O + A = A, 1A = A, 0A = O. A matrix B such that
A + B = B + A = O is denoted by −A. It holds that −A = (−1)A, −(−A) = A. A
row/column vector with only 0 entries is called a zero vector, denoted by 0.
(exercise01) Show (8).
(note) We often write simply that A+ (−B) = A−B.

5.3. Matrix multiplication. Let A = (aij) be an m × n matrix, B = (bij) be an
n× p matrix. Then we define the product AB = C = (cij) of A and B (multiplication
of A and B) as follows. C is an m× p matrix such that

cij =

n∑

k=1

aikbkj . (9)

=

A

i

B

j

p

C

j

i

p

m

n

nm

(exercise02) Calculate the following.




1 2 3
2 3 1

3 1 2









2 1 1
−1 3 −2

2 −3 1



+





1 −3 −1
2 −1 −4

1 1 2









2 1 1
−1 3 −2

2 −3 1





+





1 1 −2

−4 1 3

−4 −2 −1









2 1 1

−1 3 −2

2 −3 1





(10)

(ans) Answer only:





6 3 3

−3 9 −6

6 −9 3



.

In general, AB = BA does not hold for matrices A and B. If it holds, A and B are
said to be commutative. The following laws of matrix addition and multiplication hold,
provided that matrices have appropriate dimensions so that matrix operations can be
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performed. For example, in 1:, A,B and C are m × n, n × p and p × q, respectively,
and in 2:, A is m× n, and B,C are n× p.

1 : (AB)C = A(BC) (associative law)
2 : A(B + C) = AB + AC (distributive law)
3 : (A+B)C = AC +BC (distributive law)
4 : (kA)B = A(kB) = k(AB)

(11)

(exercise03) Prove (11).
Proof of 1:. It is clear that both sides are defined and they have the same dimension
m×q. Let AB = (xik), then xik =

∑n
j=1 aijbjk. Hence letting (AB)C = (yil), we have

yil =
∑p

k=1 xikckl =
∑p

k=1

(∑n
j=1 aijbjk

)
ckl

=
∑p

k=1

∑n
j=1 aijbjkckl.

(12)

Next let BC = (x̃jl), then x̃jl =
∑p

k=1 bjkckl. Hence letting A(BC) = (ỹil), we have

ỹil =
∑n

j=1 aij x̃jl =
∑n

j=1 aij (
∑p

k=1 bjkckl)

=
∑n

j=1

∑p
k=1 aijbjkckl.

(13)

From (12) and (13), it follows that yil = ỹil. Therefore (AB)C = A(BC). �

Proof of 2:. It is clear that both sides are defined and they have the same dimension
m× p. Let B + C = (xjk), then xjk = bjk + cjk. Hence letting A(B + C) = (yik), we
have

yik =

n∑

j=1

aijxjk =

n∑

j=1

aij(bjk + cjk) =

n∑

j=1

aijbjk +

n∑

j=1

aijcjk. (14)

Next let AB = (x̃ik), AC = (ỹik) and AB + AC = (z̃ik), then

x̃ik =
∑n

j=1 aijbjk, ỹik =
∑n

j=1 aijcjk.

∴ z̃ik = x̃ik + ỹik =
∑n

j=1 aijbjk +
∑n

j=1 aijcjk.
(15)

From (14) and (15), it follows that yik = z̃ik. Therefore A(B + C) = AB +AC. �

According to (8) and (11), the associative laws of addition and multiplication hold.
Thus the sum or product of several matrices does not depend on the way to insert
parentheses.

A1 + A2 + · · ·+ As

A1A2 . . . As
(16)

Hence in expressions as (16), parentheses are usually omitted. Moreover, by distribu-
tive law (11), we have

A(B1 +B2 + · · ·+Bs) = AB1 +AB2 + · · ·+ABs,
(A1 +A2 + · · ·+ As)B = A1B + A2B + · · ·+AsB.

(17)

(exercise04) Prove the above by induction.
Let A be an m× n matrix, then obviously it holds that AOnp = Omp, and OlmA =

Oln.
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The (i, i) entry of a matrix is called a diagonal entry. An n × n matrix, such that
only diagonal entries may have nonzero values, is called a diagonal matrix of order n.




a11 0 0 . . . 0
0 a22 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ann




(18)

This diagonal matrix is often simply expressed as follows.



a11 O
a22

. . .

O ann


 (19)

Here, O in the matrix does not mean a zero matrix, but it means the symbol O and
the space around it has only zero entries. The above diagonal matrix is sometimes
denoted more simply by diag(a11, . . . , ann). It is clear that

diag(a11, . . . , ann) + diag(b11, . . . , bnn) = diag(a11 + b11, . . . , ann + bnn)
diag(a11, . . . , ann) diag(b11, . . . , bnn) = diag(a11b11, . . . , annbnn)
(diag(a11, . . . , ann))

s
= diag (as11, . . . , a

s
nn) (s = 1, 2, 3, . . . ) (⇒ 5.5).

(20)

A diagonal matrix of order n where every diagonal entry is 1 is called the identity
matrix of order n, denoted by En or E. Every column vector of En is called an
n-dimensional elementary vector, denoted by e1, e2, . . . , en from left to right.

En =




1 O
1

. . .

O 1


 ; e1 =




1
0
...
0


 , e2 =




0
1
0
...
0




, . . . , en =




0
...
0
1


 (21)

For every m× n matrix A, it holds that

AEn = EmA = A. (22)

(exercise05) (1) Confirm (20). (2) Show (22). (3) Let D be a diagonal matrix of order
n and A be a matrix of order n. Calculate AD and DA.

For some scalar k, a matrix kEn is called a scalar matrix. By (11) and (22), we have

A(kEn) = k(AEn) = kA,
(kEm)A = k(EmA) = kA.

(23)

That is, multiplying a matrix by a scalar matrix on the left or right causes only scalar
multiplication. Conversely, only scalar matrices have such a property.

Theorem 1. Let F be a matrix of order n, then

F is a scalar matrix ⇐⇒ For any matrix X of order n, FX = XF . (24)

Proof. ⇒ 5.11.
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A square matrix A = (aij) is called upper triangular if it holds that i > j =⇒
aij = 0, and A is called lower triangular if it holds that i < j =⇒ aij = 0. A square
matrix is called triangular if it is upper triangular or lower triangular. The sum or
product of upper (respectively, lower) triangular matrices of the same order is also
upper (respectively, lower) triangular.

5.4. Block matrices. If an m × n matrix A is parted by vertical or horizontal lines,
then A is decomposed into several smaller matrices. For example,

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

m1

m2

m3

n1 n2 n3

=




A11 A12 A13

A21 A22 A23

A31 A32 A33


 . (25)

This matrix expression is called a block matrix or a partitioned matrix. It is also
simply denoted by A = (Aij) (1 ≤ i, j ≤ 3). In general, a block matrix has the form:

A =




A11 A12 . . . A1s

A21 A22 . . . A2s

. . . . . . . . . . . . . . . . . . . .
Ar1 Ar2 . . . Ars




= (Aij) (1 ≤ i ≤ r, 1 ≤ j ≤ s),

(26)

which is called an r×s block matrix, where Aij is called the (i, j) block or a submatrix
of A.1 Note that r × s is not the dimension of A but the number of blocks. A block
matrix of dimension n× n is called a block matrix of order n.

Let A = (Aij) (1 ≤ i ≤ r, 1 ≤ j ≤ s) be an r × s block matrix, and Aij be an
mi × nj matrix for every i, j. Then the row partition of A is defined to be the se-
quence (m1, m2, . . . , mr), and the column partition of A is defined to be the sequence
(n1, n2, . . . , ns). Any two matrices of the same dimension are called identically parti-
tioned if they have the same row partition and the same column partition.

Let B = (Bij) be a 3×3 block matrix, identically partitioned to (25). Then it holds
that

A+B =




A11 +B11 A12 +B12 A13 +B13

A21 +B21 A22 +B22 A23 +B23

A31 +B31 A32 +B32 A33 +B33


 . (27)

In general, (including scalar multiplication) we have

Theorem 2. Suppose two r × s block matrices A = (Aij) and B = (Bij) (1 ≤ i ≤
r, 1 ≤ j ≤ s) are identically partitioned, and k is a scalar, then

A+B = (Aij +Bij) (1 ≤ i ≤ r, 1 ≤ j ≤ s),
kA = (kAij) (1 ≤ i ≤ r, 1 ≤ j ≤ s).

(28)

1A matrix and its arbitrary partitionings (block matrices) are completely identified with each other.
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Next we consider multiplication of block matrices. Let A be a block matrix in (25),
and let B be the following block matrix:

B =

B11 B12

B21 B22

B31 B32

n1

n2

n3

p1 p2

=




B11 B12

B21 B22

B31 B32


 . (29)

Here, note that the column partition of A is identical to the row partition of B. Then
we can perform multiplication as follows.

AB =




A11B11 + A12B21 + A13B31 A11B12 +A12B22 +A13B32

A21B11 + A22B21 + A23B31 A21B12 +A22B22 +A23B32

A31B11 + A32B21 + A33B31 A31B12 +A32B22 +A33B32


 (30)

Theorem 2’. Let A = (Aij) (1 ≤ i ≤ r, 1 ≤ j ≤ s) be an r × s block matrix and
B = (Bij) (1 ≤ i ≤ s, 1 ≤ j ≤ t) be an s× t block matrix, and suppose Aij is mi × nj

and Bij is ni × pj. Then

AB = (Cij) (1 ≤ i ≤ r, 1 ≤ j ≤ t), Cij =
s∑

k=1

AikBkj . (31)

Proof. Consider the case (30). Let A = (aij) and B = (bij). Focus on the (i, j) entry
cij of AB. For simplicity, the i-th row of A is in the top blocks, and the j-th column
of B is in the left-most blocks. By definition of matrix multiplication, (9) holds, which
is rewritten as

cij =

n∑

k=1

aikbkj =

n1∑

k=1

aikbkj +

n1+n2∑

k=n1+1

aikbkj +

n∑

k=n1+n2+1

aikbkj . (32)

However, these terms are the (i, j) entries of A11B11, A12B21 and A13B31, respectively.
Consequently,

(the (i, j) entry of AB) = (the (i, j) entry of A11B11 + A12B21 +A13B31). (33)

We can treat similarly the case where the (i, j) entry is located in the other block. �

(exercise06) Using block matrices, perform the matrix calculation below.









2 0 0 3

0 2 0 2

0 0 2 1
1 0 1 3

















3 2 1 4

2 1 3 4

1 3 2 3
1 0 0 3









(34)
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(ans)











2 0 0 3
0 2 0 2
0 0 2 1

1 0 1 3





















3 2 1 4
2 1 3 4
1 3 2 3

1 0 0 3











=





















2 0 0
0 2 0
0 0 2









3 2 1 4
2 1 3 4
1 3 2 3



 +





3
2
1





(

1 0 0 3
)

(

1 0 1
)





3 2 1 4
2 1 3 4
1 3 2 3



 +
(

3
)(

1 0 0 3
)

















=













6 4 2 8
4 2 6 8
2 6 4 6



 +





3 0 0 9
2 0 0 6
1 0 0 3





(

4 5 3 7
)

+
(

3 0 0 9
)









=







9 4 2 17
6 2 6 14
3 6 4 9
7 5 3 16






.

(35)

A block matrix of order n is called a symmetrically partitioned matrix if the row
partition is identical to the column partition. In other words, if a block matrix:




A11 A12 . . . A1t

A21 A22 . . . A2t

. . . . . . . . . . . . . . . . . . . .
At1 At2 . . . Att


 (36)

has square blocks A11, A22, . . . , Att, then it is called symmetrically partitioned. If
several square matrices of order n are symmetrically and identically partitioned, then
we can perform addition and multiplication keeping their symmetrically partitioned
form.

A symmetrically partitioned matrix (36) satisfying that i 6= j ⇒ Aij = O is called
a block diagonal matrix.2 For two identically partitioned block diagonal matrices, we
have











A1 O

A2

. . .

O At





















B1 O

B2

. . .

O Bt











=











A1B1 O

A2B2

. . .

O AtBt











. (37)

Therefore for a natural number s, we have the following. (⇒ 5.5)










A1 O

A2

. . .

O At











s

=











As
1 O

As
2

. . .

O As
t











(38)

5.5. Inverse matrices. For a matrix A of order n, a matrix X of order n which
satisfies the following is called the inverse (matrix) of A, denoted by A−1.

AX = XA = En (39)

By this definition, X = A−1 and simultaneously, A = X−1, that is, A and X are the
inverse matrices of each other. Hence it holds that A = (A−1)−1. However, not every
matrix has an inverse. If A has an inverse, then A is called nonsingular, invertible or

2If a symmetrically partitioned matrix (36) satisfies that i > j ⇒ Aij = O (respectively, i < j ⇒

Aij = O), then it is called a block upper triangular (respectively, lower triangular) matrix. If a matrix

is block upper triangular or block lower triangular, then it is called block triangular.
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nondegenerate, and the inverse of A is unique, because letting X and Y be inverses of
A, then

Y = EnY = (XA)Y = X(AY ) = XEn = X. (40)

Suppose A and B are nonsingular matrices of order n, then (AB)−1 = B−1A−1.
Indeed,

(AB)(B−1A−1) = A(BB−1)A−1 = AEnA
−1 = AA−1 = En

(B−1A−1)(AB) = B−1(A−1A)B = B−1EnB = B−1B = En.
(41)

Similarly, suppose A1, A2, . . . , As are nonsingular matrices of order n, then we see that

(A1A2 . . . As)
−1 = A−1

s . . . A−1
2 A−1

1 . (42)

Therefore the product of several nonsingular matrices are also nonsingular.
(note) A square matrix that is not nonsingular is called singular or degenerate.

An explicit formula for the inverse of an arbitrary nonsingular matrix is given
later. Here we consider several formulas for the inverses of simple block matrices.
Let A,C,A1, A2, . . . , At be nonsingular matrices of various orders, then
(

A B
O C

)−1

=

(
A−1 −A−1BC−1

O C−1

)
;

(
A O
O C

)−1

=

(
A−1 O
O C−1

)

(
A O
B C

)−1

=

(
A−1 O

−C−1BA−1 C−1

)











A1 O

A2

. . .

O At











−1

=













A−1
1 O

A−1
2

. . .

O A−1
t













.

(43)

(exercise07) (1) Show those formulas by block matrix calculation. (2) Show that the

inverse of a 2 × 2 nonsingular matrix is given by:
(

a b

c d

)−1

=
1

ad− bc

(

d −b

−c a

)

(ad− bc 6= 0).
The product of s copies of a matrix A of order n is called the s-th power of A,

denoted by As. The following exponential laws hold. Letting r, s be natural numbers,

ArAs = Ar+s, (Ar)
s
= Ars. (44)

Define A0 = En, and if A is nonsingular, define A−s =
(
A−1

)s
, then (44) holds for

every integers r, s. If AB = BA, it holds that (AB)s = AsBs.3

The following theorem concerning nonsingular matrices is very useful.

Theorem 3. Let A and B be matrices of order n. If AB = En, then BA = En, hence
A and B are nonsingular and one is the inverse of the other.

Proof. ⇒ 5.11.

(note) We refrain to use this theorem especially for easy proof problems.

3If AB = BA, for nonnegative integer s, we have (A + B)s =
∑s

k=0

(

s

k

)

As−kBk (the binomial

theorem), etc.
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5.6. Trace. Let A = (aij) be a matrix of order n. The sum of all diagonal entries of
A is called the trace of A, denoted by trA.

trA = a11 + a22 + · · ·+ ann. (45)

Let B be another matrix of order n, then the following holds.

tr(A+B) = trA+ trB
tr(kA) = k trA
tr(AB) = tr(BA)
trA = tr(tA)

(46)

(exercise08) (1) Show the above formulas. (2) Let P be a nonsingular matrix of order
n, then prove that tr(P−1AP ) = trA.
Proof of the third formula of (46).

tr(AB) =
n∑

i=1

n∑

j=1

aijbji =
n∑

j=1

n∑

i=1

bjiaij = tr(BA) � (47)

As we will learn later, the trace of a square matrix is the sum of all eigenvalues
(including their multiplicities) of the matrix. (⇒ 12)
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5.7. Elementary operations on matrices. The concept of elementary operations
is very important in the theory of matrices. To begin with we introduce three kinds of
elementary matrices.

Pn(i, j) =
A matrix given by interchanging the i-th row and
the j-th row of En, or equivalently, interchanging
the i-th column and the j-th column of En.

(i 6= j)

Qn(i, c) = A matrix given by replacing the (i, i) entry of En by c. (c 6= 0)
Rn(i, j; c) = A matrix given by replacing the (i, j) entry of En by c. (i 6= j)

(48)

Pn(i, j) =

i) j)

i)

j)




1
. . .

...
...

1
· · · 0 · · · 1 · · ·

1
...

. . .
...

1
· · · 1 · · · 0 · · ·

1
...

...
. . .

1




Qn(i, c) =

i)

i)




1
. . .

...
1

· · · c · · ·
1

...
. . .

1




Rn(i, j; c) =

j)

i)




1
. . .

...
· · · c

. . .

1




(49)

As we have seen, all elementary matrices are obtained by minor changes of the identity
matrix.
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Here we give several examples of elementary matrices of order 3.

P3(1, 2) =




0 1 0
1 0 0
0 0 1



 Q3(1, 5) =




5 0 0
0 1 0
0 0 1





R3(2, 3;−4) =




1 0 0
0 1 −4
0 0 1




(50)

Next we observe the result of the multiplication of an m × n matrix A on the left
by an elementary matrix.

Pm(i, j)A : interchanges the i-th row and the j-th row of A. (i 6= j)
Qm(i, c)A : multiplies the i-th row of A by c. (c 6= 0)

Rm(i, j; c)A :
adds a scalar c multiple of the j-th row of A
to the i-th row of A.

(i 6= j)
(51)

Similarly, the multiplication of A on the right by an elementary matrix follows.

APn(i, j) : interchanges the i-th column and the j-th column of A. (i 6= j)
AQn(i, c) : multiplies the i-th column of A by c. (c 6= 0)

ARn(i, j; c) :
adds a scalar c multiple of the i-th column of A
to the j-th column of A.

(i 6= j)

(52)
Three kinds of operations in (51) are called elementary row operations, and three

kinds of operations in (52) are called elementary column operations. Collectively, they
are called elementary operations.

The following are examples of elementary operations on a matrix of order 3. Here,

i© denotes the i-th row, and j denotes the j-th column.

P3(2, 3)A =





1 0 0
0 0 1
0 1 0









1 2 3
4 5 6
7 8 9



 =





1 2 3
7 8 9
4 5 6



 2©↔ 3©

AP3(1, 3) =





1 2 3
4 5 6
7 8 9









0 0 1
0 1 0
1 0 0



 =





3 2 1
6 5 4
9 8 7



 1 ↔ 3

Q3(2, c)A =





1 0 0
0 c 0
0 0 1









1 2 3
4 5 6
7 8 9



 =





1 2 3
4c 5c 6c
7 8 9



 c 2©

AQ3(3, c) =





1 2 3
4 5 6
7 8 9









1 0 0
0 1 0
0 0 c



 =





1 2 3c
4 5 6c
7 8 9c



 c 3

R3(1, 3; c)A =





1 0 c
0 1 0
0 0 1









1 2 3
4 5 6
7 8 9



 =





1 + 7c 2 + 8c 3 + 9c
4 5 6
7 8 9



 1©+ c 3©

AR3(3, 2; c) =





1 2 3
4 5 6
7 8 9









1 0 0
0 1 0
0 c 1



 =





1 2 + 3c 3
4 5 + 6c 6
7 8 + 9c 9



 2 + c 3

(53)
(exercise09) Prove (51) and (52) using block matrices.
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5.8. Nonsingularity of elementary matrices. Every elementary matrix is nonsin-
gular, and its inverse is also an elementary matrix. The following show this fact.

Pn(i, j)Pn(i, j) = En. ∴ (Pn(i, j))
−1 = Pn(i, j).

Qn(i, c)Qn(i, c
−1) = Qn(i, c

−1)Qn(i, c) = En.

∴ (Qn(i, c))
−1 = Qn(i, c

−1).

Rn(i, j; c)Rn(i, j;−c) = Rn(i, j;−c)Rn(i, j; c) = En.

∴ (Rn(i, j; c))
−1 = Rn(i, j;−c).

(54)

These formulas can be shown by calculation, however, there is another way: the multi-
plication: Pn(i, j)Pn(i, j)A first interchanges the i-th row and the j-th row of A, next
interchanges the i-th row and the j-th row again, then returns it to the original A.

∴ Pn(i, j)Pn(i, j)A = A. ∴ Pn(i, j)Pn(i, j) = En. (55)

Qn(i, c
−1)Qn(i, c)A multiplies the i-th row by c, and multiplies it by c−1, then returns

it to the original. Rn(i, j;−c)Rn(i, j; c)A adds the i-th row by the j-th row multiplied
by c, and subtracts the i-th row by the j-th row multiplied by c, then returns it to the
original. Consequently, (54) is proved.

Since the inverse of an elementary matrix is also an elementary matrix, the inverse
operation of an elementary operation:

A

P×
−→
←−

P−1×

PA, A

×Q
−→
←−
×Q−1

AQ (56)

is also an elementary operation. That is to say, elementary operations are invertible. In
particular, the inverse of an elementary row operation is an elementary row operation,
and the inverse of an elementary column operation is an elementary column operation.

Reversing the order of two operations does not change the result, then these op-
erations are called commutative. In general, two elementary row operations, or two
elementary column operations are not commutative, but an elementary row operation
and an elementary column operation are commutative as below.

A
P×
−→ PA

×Q
−→ PAQ; A

×Q
−→ AQ

P×
−→ PAQ (57)

5.9. Ranks of matrices. The rank of a matrix is defined by using elementary op-
erations. Let A be an m × n matrix. Define the canonical form Fmn(r) of a matrix
as

Fmn(r) =

(
Er Or,n−r

Om−r,r Om−r,n−r

)
. (58)

This is an m × n matrix such that successive r diagonal entries from the upper left
corner are 1, and the rest entries are 0. If A is transformed into Fmn(r) by a sequence
of elementary operations, say,

A −→−→ · · · −→ Fmn(r), (59)
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then Fmn(r) is the canonical form of A, and r is called the rank of A, denoted by
r(A). Every matrix can be transformed into some canonical form. Note that Fmn(r)
has several forms depending on the values of m,n, r as follows.

Fmn(m) =
(
Em Om,n−m

)
Fmn(n) =

(
En

Om−n,n

)

Fnn(n) = En Fmn(0) = Omn

(60)

The following is a typical algorithm to find the rank of a matrix.

0: Given a matrix Omn, then it is already Fmn(0).
1: Given a matrix A 6= O, if its (1, 1) entry is not equal to 1, then make it equal to 1
by elementary operations.

2: Subtract a scalar multiple of the first row from every i > 1 th row to make every
entry below the (1, 1) entry equal to 0. Then we have e1 in the first column. Next
subtract a scalar multiple of the first column from every j > 1 th column to make every
entry on the right-hand side of the (1, 1) entry equal to 0. This technique is called the
sweeping-out method, sweeping the first column and row.

3: If the (2, 2) entry is not equal to 1, then make it equal to 1 by elementary operations
with respect to the second and subsequent rows and columns.

4: Subtract a scalar multiple of the second row from every i > 2 th row to make every
entry below the (2, 2) entry equal to 0. Then we have e2 in the second column. Next
subtract a scalar multiple of the second column from every j > 2 th column to make
every entry on the right-hand side of the (2, 2) entry equal to 0. The second column
and row have been swept.

5: Iterating sweeping, we have a canonical form.

Even if we use this algorithm, there are many ways from a matrix to the canonical
form. Also, it is better to avoid fractions or large magnitude numbers as much as pos-
sible. The following is an example of a sequence of elementary operations to determine
the rank of a matrix.

A =





2 3 −1 −4
5 2 1 −3

4 −5 5 6



 −→





2 3 1 −4
5 2 −1 −3

4 −5 −5 6



 −→





1 3 2 −4
−1 2 5 −3

−5 −5 4 6





−→





1 3 2 −4

0 5 7 −7

0 10 14 −14



 −→





1 0 0 0

0 5 7 −7

0 10 14 −14



 −→





1 0 0 0

0 1 7 −7

0 2 14 −14





−→





1 0 0 0

0 1 7 −7
0 0 0 0



 −→





1 0 0 0

0 1 0 0
0 0 0 0



 = F34(2). ∴ r(A) = 2.

(61)
The following theorem assures that the rank of a matrix is well-defined.

Theorem 4. The canonical form of a matrix A is uniquely determined by A itself,
independent of the way of transformation of A.
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Proof. Suppose an m × n matrix A is transformed into two canonical forms Fmn(r)
and Fmn(s) (r ≤ s) by two sequences of elementary operations.

A −→−→ · · · −→ Fmn(r)
A −→−→ · · · −→ Fmn(s)

(62)

Since elementary operations are invertible, starting with Fmn(r) we have

Fmn(r) −→ · · · −→ Fmn(s). (63)

Elementary operations are given by multiplying by elementary matrices on the left or
right. Thus letting Pi and Qi be elementary matrices, we have

Pk . . . P2P1Fmn(r)Q1Q2 . . .Ql = Fmn(s). (64)

Letting Pk . . . P2P1 = P and Q1Q2 . . .Ql = Q, we have

PFmn(r)Q = Fmn(s). (65)

Then letting P and Q be symmetrically partitioned,
(

P11 P12

P21 P22

)(
Er O
O O

)(
Q11 Q12

Q21 Q22

)
=

(
P11Q11 P11Q12

P21Q11 P21Q12

)

=

(
Es O
O O

)
.

(66)

Since r ≤ s, P11Q11 = Er. Hence by Theorem 3, P11 and Q11 are nonsingular. Thus
from P11Q12 = O it follows that Q12 = O. Therefore P21Q12 = O, which implies that
r = s. �

5.10. Rank and nonsingularity. Nonsingularity of a square matrix is determined
by its rank.

Theorem 5. For a matrix A of order n,

A is nonsingular ⇐⇒ r(A) = n. (67)

Proof. (⇒) By reduction to absurdity. Let A be a nonsingular matrix of order n.
Suppose r(A) = r < n. By applying elementary operations on A, we have

A −→−→ · · · −→ Fnn(r). (68)

Hence multiplying A by elementary matrices Pi and Qi on both sides, we have

Pk . . . P2P1AQ1Q2 . . .Ql = PAQ = Fnn(r). (69)

Since the product of several elementary matrices is nonsingular, P and Q are non-
singular. Also, as A is nonsingular, the product PAQ is nonsingular. Here letting
(PAQ)−1 = X ,

En = X(PAQ) = XFnn(r) =




∗ · · · ∗ 0 · · · 0
. . . . . . . . . . . . . . . . . .
∗ · · · ∗ 0 · · · 0



 , (70)

which is a contradiction. �
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Proof. (⇐) Let A be a matrix of order n and of rank n. Similarly to the above proof,
by nonsingular matrices P and Q, we have

PAQ = En. ∴ A = P−1Q−1. (71)

Hence A is the product of nonsingular matrices, and therefore A is nonsingular. �

Reviewing (71), P and Q are products of several elementary matrices, and their
inverses P−1 and Q−1 are also products of several elementary matrices. Consequently,
A is represented as a product of several elementary matrices. Therefore if r(A) =
n, then A is a product of elementary matrices, and conversely, if A is a product of
elementary matrices, then A is nonsingular and by Theorem 5, we have r(A) = n.
Accordingly,

r(A) = n ⇐⇒ A is a product of several elementary matrices (72)

In addition, slightly modifying (71), we have

QPA = En, AQP = En. (73)

The first equation shows that A is transformed into En by only elementary row oper-
ations, and the second one shows that A is transformed into En by only elementary
column operations. Summarizing those results, we have the following.

Theorem 5+. For a matrix A of order n, five conditions below are equivalent.

(i) A is nonsingular. (ii) r(A) = n.
(iii) A is represented as a product of several elementary matrices.
(iv) A is transformed into En by only elementary row operations.
(v) A is transformed into En by only elementary column operations.

(74)

We can determine the inverse matrix of a nonsingular matrix using the fact that
every nonsingular matrix is transformed into the identity matrix by only elementary
row operations. Let A be a nonsingular matrix of order n, and consider an n × 2n
matrix

(
A En

)
. If it is transformed into a matrix

(
En B

)
by only elementary

row operations, then we have B = A−1. The reason why is that, as elementary row
operations are to multiply by elementary matrices,

Pk . . . P2P1

(
A En

)
= P

(
A En

)
=
(
PA P

)
=
(
En B

)
.

∴ PA = En. ∴ P = A−1 = B.
(75)

(exercise10) Determine the inverse of the matrix A =





3 1 2

2 −1 2
2 2 1



.
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(ans)

(
A E

)
=





3 1 2 1 0 0

2 −1 2 0 1 0

2 2 1 0 0 1



 −→





1 2 0 1 −1 0

2 −1 2 0 1 0

2 2 1 0 0 1



 −→





1 2 0 1 −1 0

0 −5 2 −2 3 0
0 −2 1 −2 2 1



 −→





1 2 0 1 −1 0

0 −1 0 2 −1 −2
0 −2 1 −2 2 1



 −→





1 2 0 1 −1 0

0 1 0 −2 1 2
0 −2 1 −2 2 1



 −→





1 0 0 5 −3 −4

0 1 0 −2 1 2
0 0 1 −6 4 5



.

∴ A−1 =





5 −3 −4
−2 1 2

−6 4 5



.

(76)

(note) If

(
A
En

)
is transformed into

(
En

B

)
by only elementary column operations,

then B = A−1. (Why?)

5.11. Proofs of Theorems 1 and 3. In this section, we give proofs of Theorem 1 in
Section 5.3 and Theorem 3 in Section 5.5.
Proof of Theorem 1. (⇒) Clear by (23). �

Proof. (⇐) Suppose a matrix F of order n satisfies that FX = XF for every matrix
X of order n. Choose and fix a pair (i, j), and let X be a matrix of order n with a
single nonzero entry, 1, at the (i, j)-th position. Letting F = (fij),

FX =

j)








0 . . . 0 f1i 0 . . . 0
0 . . . 0 f2i 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 fni 0 . . . 0









= i)





















0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0
fj1 fj2 . . . fj,n−1 fjn
0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0





















= XF.

(77)
Hence every entry except (i, j) of both sides is equal to 0. Therefore

f1i = f2i = · · · = fi−1,i = fi+1,i = fi+2,i = · · · = fni = 0
fj1 = fj2 = · · · = fj,j−1 = fj,j+1 = fj,j+2 = · · · = fjn = 0.

(78)

Comparing the (i, j) entries of both sides, we have

fii = fjj . (79)

Taking various (i, j), it is seen that F has nonzero entries only on the diagonal, and
all entries on the diagonal have the same value. Therefore F is a scalar matrix. �
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Proof of Theorem 3. By induction on n. Obviously, the proposition holds for n = 1.
Suppose it holds for n−1. Let A and B be matrices of order n satisfying that AB = En.
Then it is clear that A is transformed as follows by elementary operations.

A −→−→ · · · −→

(
1 t0

0 A1

)
(80)

Here, A1 is a matrix of order n− 1. Hence letting P and Q be the products of several

elementary matrices, we have PAQ =
(

1 t
0

0 A1

)

. Since AB = En,

(PAQ)(Q−1BP−1) = P (AQQ−1B)P−1 = P (AB)P−1 = PEnP
−1 = En. (81)

Letting Q−1BP−1 = R, we have (PAQ)R = En. Using block matrices,
(

1 t0

0 A1

)(
R11 R12

R21 R22

)
=

(
1 t0

0 En−1

)
. (82)

Thus we have A1R22 = En−1, and therefore, by the induction hypothesis, A1 is non-
singular and R22 = A−1

1 . Hence
(

1 t0

0 R22

)(
1 t0

0 A1

)
=

(
1 t0

0 En−1

)
= En. (83)

Letting
(

1 t
0

0 R22

)

= R̃, we have R̃(PAQ) = En.

∴ QR̃(PAQ)Q−1 = En. ∴ (QR̃P )A = En. (84)

Consequently, there exists a matrix B′ such that B′A = En. Since

B = EnB = (B′A)B = B′(AB) = B′En = B′, (85)

we have BA = En. The induction is completed. �

5.12. Inner products of vectors. For a complex number z = x + yi, z = x − yi
is called the complex conjugate of z. Denote by |z| the absolute value (modulus,

magnitude) of z, defined by |z| =
√
x2 + y2. Let w be another complex number, then

we have the following.

z + w = z + w zw = z w
|z + w| ≤ |z|+ |w| |zw| = |z| · |w|

z z = |z|2
(86)

In general, for a complex matrix A = (aij), the complex matrix with complex

conjugate entries is denoted by A, that is,

A = (aij). (87)

Inner products of column vectors with n entries are defined in a similar manner to

3-dimensional vectors. For two complex column vectors with n entries x =









x1

.

.

.
xn









,
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y =









y1

.

.

.
yn









, define the inner product of x and y by

(x, y) = txy = x1y1 + · · ·+ xnyn. (88)

In particular, for real vectors, we have

(x, y) = txy = x1y1 + · · ·+ xnyn. (89)

To distinguish from inner products of real vectors, inner products of complex vectors
are sometimes called Hermitian products.

Let c be a complex number, inner product satisfies the following.

(x, y) = (y, x)
(x, y+ z) = (x, y) + (x, z) (x+ y, z) = (x, z) + (y, z)

(cx, y) = c(x, y) (x, cy) = c(x, y)
(x, x) ≥ 0 and (x, x) = 0 ⇐⇒ x = 0

(90)

The property of the first three lines is called conjugate linearity. The property of
the fourth line is called positivity. From positivity it follows that

√
(x, x) is always a

nonnegative real number. Then write
√

(x, x) = ||x|| (91)

and is called the magnitude or norm of x. The following holds.

||cx|| = |c| · ||x||
|(x, y)| ≤ ||x|| · ||y|| (Cauchy–Schwarz inequality)
||x+ y|| ≤ ||x||+ ||y|| (Triangle inequality)

(92)

If two vectors x and tty satisfy that (x, y) = 0, then x and y are perpendicular to
each other. In addition, if there exists a scalar c such that x = cy or y = cx, then x

and y are parallel to each other.
A vector of magnitude 1 is called a unit vector. For a vector x, ±||x||−1x is a unit

vector which is parallel to x. In the case of complex vectors, ω||x||−1x is a unit vector
which is parallel to x for every complex number ω of absolute value 1.

(exercise11) (1) Show (90) and (92). (2) Find real unit vectors which are perpendicular

to all of







2
1
1

−1






,







1
2
1
1






and







0
2
1
3






.

(ans) (1) We show the second and third inequalities of (92).

Proof of Cauchy–Schwarz inequality. If y = 0, then both sides are equal to 0. Hence
suppose y 6= 0.

0 ≤ || ||y||2x− (x, y)y||2

= ||y||4||x||2 − ||y||2(x, y)(x, y)− (x, y)||y||2(y, x) + (x, y)(x, y)||y||2

= ||y||2(||x||2||y||2 − |(x, y)|
2
).

∴ |(x, y)| ≤ ||x|| · ||y||. �

(93)
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Proof of Triangle inequality. It suffices to show that the square of the right-hand side
subtracted by the square of the left-hand side is greater or equal to 0.

(||x||+ ||y||)2 − ||x+ y||2

= ||x||2 + 2||x|| · ||y||+ ||y||2 − ||x||2 − (x, y)− (y, x)− ||y||2

= 2||x|| · ||y|| − (x, y)− (x, y)

≥ 2||x|| · ||y|| − 2|(x, y)| ≥ 0 (By Cauchy–Schwarz inequality) �

(94)

(2) Shown the result only: ± 1√
14







2
0

−3
1






.

5.13. Various matrices. In general, for an m× n complex matrix A, an n×m com-
plex matrix tA is denoted by A∗, called the Hermitian adjoint (Hermitian transpose,
Hermitian conjugate) of A., denoted by A∗. Transpose or Hermitian adjoint satisfies
the following. Here, in the last line, A is assumed to be nonsingular.

t(tA) = A t(A+B) = tA+ tB t(AB) = tB tA
(A∗)∗ = A (A+B)∗ = A∗ +B∗ (AB)∗ = B∗A∗

t(kA) = k tA (kA)∗ = kA∗

(tA)
−1

= t
(
A−1

)
(A∗)−1

=
(
A−1

)∗
(95)

(exercise12) (1) Prove the above equalities. (From the fourth line, it follows that
A is nonsingular ⇐⇒ tA is nonsingular ⇐⇒ A∗ is nonsingular.)
(2) Show that r(A) = r(tA) = r(A∗).

Let A be a matrix of order n. Several names of matrices are given if some condition
is satisfied.

condition complex/real name
AA∗ = A∗A complex normal
A∗ = A complex Hermitian
A∗ = −A complex skew-Hermitian
tA = A complex complex symmetric
tA = A real real symmetric

tA = −A complex complex skew-symmetric
tA = −A real real skew-symmetric

AA∗ = A∗A = E complex unitary
A tA = tAA = E real orthogonal
i > j ⇒ aij = 0 complex upper triangular
i < j ⇒ aij = 0 complex lower triangular

(exercise13) (1) Prove that the diagonal entries of a Hermite matrix is real. (2) Prove
that the diagonal entries of a skew-symmetric matrix is 0. (3) Prove that Hermitian,
skew-Hermitian, unitary and real skew-symmetric matrices are normal. (4) Show the
following.

A is Hermitian ⇐⇒ iA is skew-Hermitian (96)

(5) Show that the product of upper (respectively, lower) triangular matrices of order
n is also upper (respectively, lower) triangular.
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keywords: systems of linear equations, general solutions,
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column transposition

6.1. Systems of linear equations. A system of linear equations with variables
x1, x2, . . . , xn has the following form:





a11x1 + a12x2 + a13x3 + · · · + a1nxn = c1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = c2
a31x1 + a32x2 + a33x3 + · · · + a3nxn = c3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + am3x3 + · · · + amnxn = cm

(1)

Let us solve this system of equations. Here, let us denote

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . . .
am1 am2 . . . amn


 , x =




x1

x2

...
xn


 , c =




c1
c2
...
cm


 . (2)

They are called the coefficient matrix, the variable vector and the constant vector,
respectively. Then (1) is rewritten simply as

Ax = c. (3)

Hence, it suffices to solve this equation. To begin with, multiplying both sides of (3)
by a nonsingular matrix P on the left, we have

PAx = Pc. (4)

However, multiplying again both sides by P−1 on the left, we retrieve (3). Therefore
(3) and (4) are equivalent to each other. Namely,

Ax = c

P
−→
←−
P−1

PAx = Pc. (5)

Thus as a result of transformation of (3), we hope to simplify (4) as much as
possible. We use elementary row operations for this purpose. A nonsingular matrix P
is expressed by the product of several elementary matrices as P = P1P2 . . . Ps. Hence,

1



2 6. SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS

to multiply by P on the left is to repeat elementary row operations. Accordingly,

consider the extended coefficient matrix Ã =
(
A c

)
and perform elementary row

operations on Ã to have

(
A c

)
P

−→ · · · −→
←− · · · ←−

P−1

(
PA Pc

)
. (6)

Consequently we have
(
PA Pc

)
(and we can go back). Therefore we can obtain

the system (4) by performing elementary row operations on Ã.
For convenience to solve (4), suppose

(
PA Pc

)
is transformed into the following

form:

(
PA Pc

)
=

(
Er B d1

O d2

)
. (7)

Then (4) has the form:

(
Er B

O

)




x1

...
xr

xr+1

...
xn




=

(
d1
d2

)
. (8)

A simple block matrix calculation shows that




Er




x1

...
xr


+B




xr+1

...
xn




0




=

(
d1

d2

)
. (9)

The lower half of this equation, we have the condition for (3) to have a solution: d2 = 0.
If d2 6= 0, (3) has no solution.

Thus, suppose that d2 = 0 and consider the upper half of (9), then we have




x1

...
xr


 = d1 −B




xr+1

...
xn


 . (10)

In order to solve this, taking arbitrary numbers αi (i = 1, . . . , n− r), and let




xr+1

...
xn


 =




α1

...
αn−r


 . (11)
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Then from (10) it follows that



x1

...
xr


 = d1 −B




α1

...
αn−r


 = d1 −

(
b1 b2 . . . bn−r

)



α1

...
αn−r


 . (12)

Here, we set B =
(
b1 b2 . . . bn−r

)
. Therefore




x1

...
xr


 = d1 − α1b1 − α2b2 − · · · − αn−rbn−r. (13)

Consequently, (9) is solved. Since (9) is equivalent to (3), (3) is solved after all.
Noticing that (3) is actually solved under the condition that d2 = 0, it is a necessary

and sufficient condition that (3) is solvable. In addition, by (7), we have

d2 = 0 ⇐⇒ r(A) = r
(
Ã
)
. (14)

Hence r(A) = r
(
Ã
)
is a necessary and sufficient condition that (3) is solvable. Sum-

marizing (11) and (13), we have the following formula.

Theorem 1. Let A be an m × n matrix, and suppose r(A) = r
(
Ã
)
= r. Then the

general solution (an expression which describes all possible solutions) to (3) is given by

x =




x1

...
xr

xr+1

...
xn




=

(
d1
0

)
+ α1

(
−b1
e1

)
+ α2

(
−b2
e2

)
+ · · ·+ αn−r

(
−bn−r

en−r

)
.

(15)
Here, α1, . . . , αn−r are arbitrary constants.

The arbitrary constants α1, . . . , αn−r in (15) are called parameters of this solution.
The number of the parameters are n − r = (the number of variables) − r(A). If (15)
contains at least one parameter, there are infinitely many solutions, and if it contains
no parameters, there is a unique solution.
(note1) If the number of linear equations = r(A), say, m = r, then the right-hand side
of (7) has no zero rows, which is expressed in the form:

(
Er B d1

)
. (16)

In this case, there is no d2, and therefore solutions exist, and is represented as (15).
(note2) A further special case is n = r or m = n = r. Then the right-hand side of (7)
has no B block, which is expressed in the form:

(
En d1
O d2

)
or

(
En d1

)
(17)
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In the left case, there exists a solution subject to d2 = 0, while in the right case, there
exists always a solution. Anyway, it is a unique solution expressed as x = d1, because
(17) corresponds to the equation Enx = d1, say, x = d1. This case, where the solution
is unique, corresponds to the case where (15) has no parameters.

6.2. Homogeneous systems of linear equations. A system of linear equations
(1) with zero constant terms ci = 0 (i = 1, . . . , m) is called a homogeneous system of
linear equations (corresponding to the system (1)). A system which is not homogeneous
is called inhomogeneous. A homogeneous system of linear equations is written with
matrices as

Ax = 0. (18)

When we solve this system, since Ã has the right-most column 0, after elementary
row operations, the right-most column remains 0, and therefore d1 = 0 and d2 = 0.
Hence (18) always has a solution, and its general solution is expressed as (15) without
the first term. In particular, it has a solution x = 0, called a trivial solution. In the
solving process, it suffices to perform elementary row operations on a coefficient matrix

A, instead of Ã, to get the form

(
Er B

O

)
. Here, if A is transformed into

(
En

O

)

or En by elementary row operations, then by the above-mentioned (note2), there is a
unique solution x = 0. Otherwise, non-trivial solutions exist.

Theorem 2. Let A be an m× n matrix, then

r(A) < n ⇐⇒ (18) has non-trivial solutions. (19)

If m < n, (18) always has non-trivial solutions. In particular, if A is a matrix of order
n, then

A is singular ⇐⇒ (18) has non-trivial solutions. (20)

There is the following relationship between the solutions to (3) and (18).

Theorem 3. The general solution to (3) is represented as the sum of a solution to
(3) and the general solution to (18).

Proof. Indeed, the first term of (15) is a solution to (3), and the rest sum including
parameters is the general solution to (18). Also, we can prove this theorem without
(15), let x0 be a solution to (3), say, Ax0 = c, we have

Ay = 0 ⇐⇒ A(x0 + y) = c, (21)

which proves the theorem. �
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(exercise01) Solve the system of linear equations:




2x +y +z = 5
−2y −z +w = −5

x +2z −w = 3
(22)

(answer) Performing elementary row operations on Ã, we have the following.

Ã =





2 1 1 0 5

0 −2 −1 1 −5

1 0 2 −1 3



 −→





1 0 2 −1 3

0 −2 −1 1 −5

2 1 1 0 5



 −→





1 0 2 −1 3

0 −2 −1 1 −5
0 1 −3 2 −1



 −→





1 0 2 −1 3

0 1 −3 2 −1
0 −2 −1 1 −5



 −→





1 0 2 −1 3

0 1 −3 2 −1

0 0 −7 5 −7



 −→





1 0 2 −1 3

0 1 −3 2 −1

0 0 1 − 5
7

1



 −→





1 0 0 3
7

1

0 1 0 − 1
7

2

0 0 1 − 5
7

1



.

∴









x

y

z

w









=









1

2
1

0









+ α









− 3
7

1
7
5
7
1









=









1

2
1

0









+ α̃









−3

1
5

7









. (α = 7α̃)

(23)

(exercise02) Solve the system of linear equations:
{

3x +y −4z +5w = 2
8x +y −9z +15w = 12

(24)

(answer)

Ã =

(
3 1 −4 5 2
8 1 −9 15 12

)
−→

(
3 1 −4 5 2
−1 −2 3 0 6

)

−→

(
−1 −2 3 0 6
3 1 −4 5 2

)
−→

(
1 2 −3 0 −6
3 1 −4 5 2

)

−→

(
1 2 −3 0 −6
0 −5 5 5 20

)
−→

(
1 2 −3 0 −6
0 1 −1 −1 −4

)

−→

(
1 0 −1 2 2
0 1 −1 −1 −4

)
.

∴









x

y

z

w









=









2

−4
0

0









+ α









1

1
1

0









+ β









−2

1
0

1









.

(25)
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(exercise03) Determine a necessary and sufficient condition for the following system of
linear equations to have a solution, and solve it under the condition. Here, express the
solution using a, b only.






2y −z = a
3x +y +z = b
2x +z = c

(26)

(answer)

Ã =





0 2 −1 a

3 1 1 b

2 0 1 c



 −→





0 2 −1 a

1 1 0 b− c

2 0 1 c



 −→





1 1 0 b− c

0 2 −1 a

2 0 1 c





−→





1 1 0 b− c

0 2 −1 a

0 −2 1 −2b + 3c



 −→





1 1 0 b − c

0 2 −1 a

0 0 0 a− 2b + 3c





−→





1 1 0 b− c

0 1 − 1
2

a
2

0 0 0 a− 2b + 3c



 −→





1 0 1
2

− a
2
+ b − c

0 1 − 1
2

a
2

0 0 0 a− 2b+ 3c



.

(27)

Therefore the solvable condition is a− 2b+ 3c = 0. Then




x
y
z



 =




−a

2
+ b− c
a
2
0



+ α




−1

2
1
2
1



 =




−a

6
+ b

3
a
2
0



+ α̃




−1
1
2



. (28)

6.3. Exceptions and column permutations. The above method is applicable for

the most cases, however, for some systems of linear equations, Ã can not be transformed
into the right-hand side of (7) by only elementary row operations. In such cases, using

additional operation, permutation of columns of Ã except the rightmost column, makes

it possible to transform Ã into the right-hand side of (7). Here, since the columns of
A correspond to variables, if we permute columns, then we also permute variables
similarly. This method can be used for the ordinary case which is solvable with only
row operations, but to avoid confusion, it should not be blindly used. The following
example helps you to understand this method.

(exercise04) Solve the system of linear equations:






2x −y +4z +3w = 5
x −y +z +w = 5
−y −2z +3w = 1

(29)
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(answer)

Ã =





2 −1 4 3 5

1 −1 1 1 5
0 −1 −2 3 1



 −→





1 −1 1 1 5

2 −1 4 3 5
0 −1 −2 3 1



 −→





1 −1 1 1 5

0 1 2 1 −5
0 −1 −2 3 1





−→

x y z w




1 0 3 2 0

0 1 2 1 −5

0 0 0 4 −4





−→

x y w z




1 0 2 3 0

0 1 1 2 −5

0 0 4 0 −4





−→





1 0 2 3 0

0 1 1 2 −5
0 0 1 0 −1





−→





1 0 0 3 2

0 1 0 2 −4
0 0 1 0 −1



.

∴









x

y

w

z









=









2

−4

−1
0









+ α









−3

−2

0
1









. ∴









x

y

z

w









=









2

−4

0
−1









+ α









−3

−2

1
0









.

(30)
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keywords: determinants, bijections, permutations, products of
permutations, sign, transposition, even or odd permutations, cycles,
multilinearity, antisymmetry, elementary operations, singularity,
cofactor expansion, cofactor matrices, adjugate matrices, inverse

matrices, Cramer’s rule, special determinants

7.1. Determinants. For a square matrix A of order n, a polynomial in the entries
of A, named the determinant of A, a determinant of order n or an n × n determi-
nant, is often considered. Determinants are quite complicated, but using them, we
can determine the singularity of matrices, or establish an explicit formula for inverse
matrices. We denote by |A| or detA the determinant of A. To begin with, we observe
the definition of determinants. Letting A = (aij),

|A| =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

=
∑

j1,...,jn

sgn

(
1 2 . . . n
j1 j2 . . . jn

)
a1j1a2j2 . . . anjn .

(1)

Here, Sn under the summation symbol on the right-hand side of the first line denotes
the set of all permutations of n letters, and the sum on the right-hand side of the
second line runs over all permutations j1, j2, . . . , jn of 1, 2, . . . , n. The right-hand sides
of the first and the second lines represent a completely identical meaning, with just
a different way of writing, and therefore either can be adopted as the definition of a
determinant. Anyway, as the definition includes permutations, we should study them
in advance.

7.2. Bijections. Let A,B be two sets. Let f be a function from A to B. We write
this function as

f : A −→ B. (2)

If f satisfies that f(x) 6= f(x′) for any distinct two elements x and x′, then f is called
injective or an injection. If there exists an element x of A such that f(x) = y for
every element y of B, then f is called surjective, onto, or a surjection. If f is both
injective and surjective, then f is called bijective, a bijection, or a 1-1 (one-to-one)

1
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correspondence. If f : A −→ B is bijective, then there exists a function g : B −→ A
such that

(g ◦ f)(x) = g(f(x)) = x (x ∈ A)
(f ◦ g)(y) = f(g(y)) = y (y ∈ B)

(3)

This function g is called the inverse (function) of f , denoted by g = f−1. Then it holds
that f is also the inverse of g.

7.3. Permutations. For convenience, write {1, 2, . . . , n} = [n]. A bijection from [n]
to [n] is called a permutation of n letters. For example, letting n = 3, the function
below is actually a bijection because different numbers are mapped to different ones.

1 −→ 3
2 −→ 1
3 −→ 2

(4)

Hence this is a permutation of three letters. This is nothing but permuting of order
of letters 1,2,3. Therefore the number of permutations of three letters is 3! = 6. The
permutation (4) is denoted by

(
1 2 3
3 1 2

)
. (5)

Denoting it by σ, we have σ(1) = 3, σ(2) = 1 and σ(3) = 2. In general, a permutation
of n letters are expressed as follows. This expression has the same meaning if we change
the order of columns, because only the pair of column itself is important.

(
1 2 3 . . . n
j1 j2 j3 . . . jn

)
(6)

For a permutation of (6), j1 has n possibilities, j2 has (n− 1) possibilities,. . . , jn has
1 possibility, thus the total number of permutations of n letters is n!. The set of all
those permutations are denoted by Sn. For example,

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
.

(7)

The first permutation does not change the order, and so it is called the identity (unit)
permutation, denoted by e. In general, the identity permutation of n letters is as
follows.

e =

(
1 2 . . . n
1 2 . . . n

)
. (8)
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7.4. Products of permutations. A permutation is a bijection, that is a kind of
function. Hence we can compose permutations. The product of permutations is defined
to be the composition of them, say, letting σ and τ be permutations of n letters, then
στ is defined by

(στ)(x) = σ(τ(x)) (x ∈ [n]). (9)

This is a new permutation of n letters. In general, it does not hold that στ = τσ. For
example, (

1 2 3
1 3 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 1 2

)

(
1 2 3
2 1 3

)(
1 2 3
1 3 2

)
=

(
1 2 3
2 3 1

)
.

(10)

Obviously,

σe = eσ = σ. (11)

Theorem 1. Let ρ, σ, τ be permutations, then the associative law holds:

(ρσ)τ = ρ(στ). (12)

Proof. Take any x ∈ [n]. It follows from the following figure that ((ρσ)τ)(x) =
(ρ(στ))(x). ∴ (ρσ)τ = ρ(στ). �

τ

σ

ρ
στ

ρσ
x

By Theorem 1, it is shown that the product of permutations:

σ1σ2 . . . σs (13)

does not depend on the way to insert parentheses, and therefore parentheses are usually
omitted.

Let σ be a permutation of n letters. Then there exists a permutation of n letters τ
satisfying the following:

στ = τσ = e. (14)

This τ is called the inverse (permutation) of σ, denoted by σ−1. Then it also holds
that τ−1 = σ. Hence σ and τ are the inverse of each other. It is easy to determine the
inverse, it suffices to find simply the inverse function. For example,

(
1 2 3
2 3 1

)−1

=

(
2 3 1
1 2 3

)
=

(
1 2 3
3 1 2

)
. (15)
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Theorem 2. It holds that

(στ)−1 = τ−1σ−1. (16)

Proof. Actually,

(στ)(τ−1σ−1) = σ(ττ−1)σ−1 = σeσ−1 = σσ−1 = e
(τ−1σ−1)(στ) = τ−1(σ−1σ)τ = τ−1eτ = τ−1τ = e. �

(17)

Similarly, it is shown that

(σ1σ2 . . . σs)
−1 = σ−1

s . . . σ−1
2 σ−1

1 . (18)

7.5. The signs of permutations. A permutation that interchanges only two letters
and never changes the other letters, is called a transposition. There are three trans-
positions in S3. A transposition that interchanges i and j is denoted by (i, j) or (j, i).
The following is easily confirmed.

(i, j)−1 = (i, j) (19)

Every permutation of n letters can be expressed as the product of several transpo-
sitions. The method is as follows. We use the following examples for explanation.

σ =

(
1 2 3
2 3 1

)
, τ =

(
1 2 3 4 5
3 5 4 1 2

)
(20)

Draw the following figure I for σ, and write the transposition (i, j) at the intersection
of the line connecting i’s and the one connecting j’s. If you read these transpositions
from bottom to top, and write from left to right, then you have a decomposition into
transpositions. Here, the lines may be curved, but monotonously go downwards, and
it is forbidden that two lines touch or more than three lines intersect at one point.

I

1 2 3

3 12

(1,3)
(1,2)

II

2 51 3 4

43 1 5 2

(ii)

1 2 3 4 5

14 23 5

(i) (1,3)

(2,3)
(2,4) (2,5)

(4,5)
(1,5) (1,4)

(2,5)
(1,3)

(1,4)

In the figure II, it is easy to decompose the permutation if the expression of the
permutation is transformed into the lower one. Consequently,

σ = (1, 3)(1, 2), τ =

{
(1, 4)(1, 5)(4, 5)(1, 3)(2, 5)(2, 4)(2, 3)
(1, 4)(2, 5)(1, 3)

(21)
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In the figure of a permutation, several transpositions located horizontally can be
arranged freely as long as they are correctly arranged with the other transpositions.
For example, the order of (1,3) and (2,5) in II can be inverted.

Let us consider the reason why the above operation gives a decomposition of a
permutation into transpositions. In the figure of a permutation, the vertical axis
represents time, where time passes downwards. The number 1 moves along the line,
and reaches to the position of 1. The moves of the other numbers are very similar.
At a certain time, the numbers from 1 to n are permuted into the arrangement of the
numbers which appear as the intersections on the horizontal line corresponding to the
time. If the intersections are 1,3,4,2,5, then the permutation

(
1 2 3 4 5
1 3 4 2 5

)
(22)

is performed up to the time of the horizontal line. And finally, the given permutation
appears. In the permutation process in the figure, the change across the intersection is
clearly a transposition. Accordingly, the permutation is expressed by piling up several
transpositions.

In general, there are many ways to decompose a permutation into transpositions.
Also, the number of transpositions in the product is not uniquely determined by the
permutation. However, it is determined that whether the number of transpositions
is even or odd (the parity of the number of transpositions) by the permutation. If
a permutation is decomposed into even number of transpositions, then the permuta-
tion is called an even permutation, whereas if it is decomposed into odd number of
transpositions, then it is called an odd permutation. Now define

sgn(σ) =

{
1 (σ is an even permutation)
−1 (σ is an odd permutation)

(23)

This is the sign of a permutation. The sign is determined by the number of the
intersection in the figure of a permutation.

We explain the reason why the parity of the number of transpositions is determined
by a permutation. Consider the product of all differences of x1, . . . , xn:

∆ =
∏

1≤i<j≤n

(xj − xi). (24)

It is called the difference product of n variables x1, . . . , xn. Let a permutation operate
on ∆, e.g. if i is mapped to j, then replace xi by xj . It is confirmed that, by every
transposition, ∆ is always changed to −De. Hence if a permutation σ is decomposed
as σ = σ1 . . . σs = σ′

1 . . . σ
′
t for even s and odd t in two ways, then

σ∆ = σ1 . . . σs∆ = (−1)s∆ = ∆
σ∆ = σ′

1 . . . σ
′
t∆ = (−1)t∆ = −∆,

(25)

which is a contradiction.
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Theorem 3. Given two permutations σ and τ , we have the following.

sgn(στ) = sgn(σ) sgn(τ)
sgn(σ−1) = sgn(σ)

(26)

Proof. Let σ = σ1σ2 . . . σs and τ = τ1τ2 . . . τt be decompositions into transpositions.

sgn(στ) = sgn(σ1 . . . σsτ1 . . . τt) = (−1)s+t = (−1)s(−1)t = sgn(σ) sgn(τ)
sgn(σ−1) = sgn

(
(σ1 . . . σs)

−1
)
= sgn

(
σ−1
s . . . σ−1

1

)
= sgn(σs . . . σ1) = (−1)s

= sgn(σ)
(27)

Hence the theorem holds. For the second formula, it is clear if we notice that the figure
of σ−1 is given by turning the figure of σ upside down. �

A permutation which substitutes letters as follows, while fixes the other letters, is
called an s-cycle or a cycle of length s, denoted by (i1i2 . . . is).

i1 −→ i2 −→ · · · −→ is −→ i1 (28)

Here, any cyclic reordering of the symbol (i1i2 . . . is) represents the same cycle. For
example, (235) = (352) = (523).

In general, an arbitrary permutation is expressed as a product of several cycles no
two of which share common letters. For example, we can write as

(
1 2 3 4 5 6 7 8
5 1 6 4 2 3 8 7

)
= (152)(36)(78)(4). (29)

Such a decomposition of a permutation is called the cycle decomposition of a permuta-
tion, which is uniquely determined up to order of the factors. When a permutation is
decomposed into cycles, the decreasing sequence of the lengths of those cycles is called
the cycle type of the permutation. In the above case, the cycle type is (3, 2, 2, 1).

If we decompose a permutation into disjoint cycles, and further decompose each
cycle into transpositions, then we can decompose the permutation into transpositions.
A cycle (i1i2 . . . is) is decomposed into s− 1 transpositions:

(i1i2 . . . is) = (i1, is) . . . (i1, i3)(i1, i2). (30)

Hence if a permutation of n letters is decomposed into r cycles, then it is decomposed
into n− r transpositions, and therefore, we have

sgn(σ) = (−1)n−r. (31)

(exercise01) (1) List up all permutations of 3 letters, and determine their signs.

(2) Decompose σ =

(
1 2 3 4
3 4 1 2

)
into transpositions and determine the sign.

(3) Confirm the Sarrus’ rule for 3× 3 determinants using the definition (1) of determi-
nants.
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7.6. Basic properties of determinants. With the above preparation, we can un-
derstand the meaning of the definition (1) of determinants. Intuitively speaking, a
determinant of order n is a signed sum of n! terms of the product of n entries selected
exactly once from each row and column. However, (1) is not often used for actual cal-
culation of determinants. The properties or formulas derived from (1) are often used
for calculation of determinants.

Determinants have two properties “multilinearity” and “antisymmetry” as shown
in the following.

Theorem 4. (Multilinearity with respect to rows)
∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...

a′i + ã′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
a′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
ã′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

,

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
ca′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

= c

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
a′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

. (32)

Theorem 4’. (Multilinearity with respect to columns)
∣∣ a1 . . . aj + ãj . . . an

∣∣ =
∣∣ a1 . . . aj . . . an

∣∣
+
∣∣ a1 . . . ãj . . . an

∣∣ ,
∣∣ a1 . . . caj . . . an

∣∣ = c
∣∣ a1 . . . aj . . . an

∣∣ .
(33)

Theorem 5. (Antisymmetry with respect to rows) For τ ∈ Sn,
∣∣∣∣∣∣∣

a′τ(1)
...

a′τ(n)

∣∣∣∣∣∣∣
= sgn(τ)

∣∣∣∣∣∣∣

a′1
...
a′n

∣∣∣∣∣∣∣
. (34)

Theorem 5’. (Antisymmetry with respect to columns) For τ ∈ Sn,∣∣ aτ(1) . . . aτ(n)
∣∣ = sgn(τ)

∣∣ a1 . . . an
∣∣ . (35)

Here, using the first formula of (32) repeatedly, we have the following formula often
used instead of the first one of (32).

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...

a′i + b′i + · · ·+ c′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
a′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
b′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·+

∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
c′i
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣

(36)

Similarly, the following formula derived from the first formula of (33) is often used
instead of the first one of (33).
∣∣ a1 . . . aj + bj + · · ·+ cj . . . an

∣∣ =
∣∣ a1 . . . aj . . . an

∣∣

+
∣∣ a1 . . . bj . . . an

∣∣+ · · ·+
∣∣ a1 . . . cj . . . an

∣∣ (37)
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Proof of Theorem 4. From (1), it follows that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
′
1

.

.

.
a
′
i
+ ã

′
i

.

.

.
a
′
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

σ∈Sn

sgn(σ)a1σ(1) . . .
(
aiσ(i) + ãiσ(i)

)
. . . anσ(n)

=
∑

σ∈Sn

(
sgn(σ)a1σ(1) . . . aiσ(i) . . . anσ(n) + sgn(σ)a1σ(1) . . . ãiσ(i) . . . anσ(n)

)

=
∑

σ∈Sn

sgn(σ)a1σ(1) . . . aiσ(i) . . . anσ(n) +
∑

σ∈Sn

sgn(σ)a1σ(1) . . . ãiσ(i) . . . anσ(n)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
′
1

.

.

.
a
′
i

.

.

.
a
′
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
′
1

.

.

.
ã
′
i

.

.

.
a
′
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. Similarly, by (1),

(38)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a
′
1

.

.

.
ca′

i

.

.

.
a
′
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

σ∈Sn

sgn(σ)a1σ(1) . . .
(
caiσ(i)

)
. . . anσ(n)

= c
∑

σ∈Sn

sgn(σ)a1σ(1) . . . aiσ(i) . . . anσ(n) = c

∣

∣

∣

∣

∣

∣

∣

∣

a
′

1
.
.
.

a
′

n

∣

∣

∣

∣

∣

∣

∣

∣

. �

(39)

Proof of Theorem 5. From (1), it follows that
∣

∣

∣

∣

∣

∣

∣

∣

a
′

τ(1)

.

..

a
′

τ(n)

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

σ∈Sn

sgn(σ)aτ(1)σ(1)aτ(2)σ(2) . . . aτ(n)σ(n)

Applying the permutation τ−1 to the order of the product,

=
∑

σ∈Sn

sgn(σ)aτ(τ−1(1)),σ(τ−1(1)) aτ(τ−1(2)),σ(τ−1(2)) . . . aτ(τ−1(n)),σ(τ−1(n))

=
∑

σ∈Sn

sgn(σ)a1,(στ−1)(1) a2,(στ−1)(2) . . . an,(στ−1)(n)

Here, for fixed τ , if σ runs over the set Sn,
then ρ = στ−1 also runs over Sn, thus

=
∑

ρ∈Sn

sgn(ρτ)a1ρ(1) a2ρ(2) . . . anρ(n)

=
∑

ρ∈Sn

sgn(ρ)sgn(τ)a1ρ(1) a2ρ(2) . . . anρ(n)

= sgn(τ)
∑

ρ∈Sn

sgn(ρ)a1ρ(1) a2ρ(2) . . . anρ(n) = sgn(τ)

∣

∣

∣

∣

∣

∣

∣

∣

a
′

1
.
.
.

a
′

n

∣

∣

∣

∣

∣

∣

∣

∣

. �

(40)



LINEAR ALGEBRA 9

The properties with respect to columns are shown later. For antisymmetry, it is
useful when τ is a transposition. Then the theorem is rewritten as

Theorem 5-. A transposition of two rows of a determinant changes the sign of it,
and a transposition of two columns of a determinant changes the sign of it.

Next, we give a theorem for determinants of transposes.

Theorem 6. Let A be a matrix of order n, then

|A| = |tA|. (41)

Proof. By (1), we have

|tA| =
∑

σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 . . . aσ(n)n

Applying the permutation σ−1 to the order of the product,

=
∑

σ∈Sn

sgn(σ)aσ(σ−1(1)),σ−1(1)aσ(σ−1(2)),σ−1(2) . . . aσ(σ−1(n)),σ−1(n)

=
∑

σ∈Sn

sgn(σ)a1,σ−1(1)a2,σ−1(2) . . . an,σ−1(n)

Here, σ runs over the set Sn, then ρ = σ−1

also runs over Sn, thus

=
∑

ρ∈Sn

sgn(ρ−1)a1ρ(1)a2ρ(2) . . . anρ(n)

=
∑

ρ∈Sn

sgn(ρ)a1ρ(1)a2ρ(2) . . . anρ(n) = |A|. �

(42)

From Theorem 6, we can derive the properties (33) and (35) concerning columns,
because we have already shown the properties (32) and (34) concerning rows, and
transposing both sides, we have the properties concerning columns. By Theorem 6,
the determinant of a matrix is equal to the determinant of the transpose, and therefore
we have the property concerning columns.

7.7. Elementary operations and determinants. By the property of determinants,
we have the relationship between determinants and elementary operations.

R1: Interchanging two rows of a determinant changes the sign of the determinant. (mul-
tiplied by (−1))

R2: Multiplying one row of a determinant by c multiplies the determinant by c.
R3: Adding a scalar c multiple of some row to another row of a determinant preserves
the value of the determinant.

C1: Interchanging two columns of a determinant changes the sign of the determinant.
(multiplied by (−1))

C2: Multiplying one column of a determinant by c multiplies the determinant by c.
C3: Adding a scalar c multiple of some column to another column of a determinant
preserves the value of the determinant.
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Since R1,R2,C1,C2 are just the properties of determinants, we consider R3 and C3.
First of all, we confirm that a determinant with two or more identical rows, or with
two or more identical columns, is equal to 0. Let A be a square matrix with the
identical i-th and j-th rows. If we interchange these rows, A is unchanged. However,
by antisymmetry of a determinant,

|A| = −|A|, ∴ |A| = 0. (43)

Similarly, a determinant with several identical columns is equal to 0. Then let B be a
matrix obtained by adding c multiple of the j-th row to the i-th row, then we have

|B| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...

a′i + ca′j
...
a′j
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
a′i
...
a′j
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...

ca′j
...
a′j
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= |A|+ c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a′1
...
a′j
...
a′j
...
a′n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= |A|. (44)

A Similar formula with respect to columns holds.
Consider a determinant some of whose rows, i.e. the i-th row is a zero vector. Ac-

cording to (1), aiσ(i) is always equal to 0, hence all terms vanishes and the determinant

vanishes. Transposing this result, a determinant some of whose columns is a zero vector
also vanishes.
(exercise02) Calculate the determinant below using elementary operations.

∣∣∣∣∣∣

5 100 15
4 50 6
7 80 8

∣∣∣∣∣∣
(45)

(ans)
∣∣∣∣∣∣

5 100 15
4 50 6
7 80 8

∣∣∣∣∣∣
= 5 ·

∣∣∣∣∣∣

1 20 3
4 50 6
7 80 8

∣∣∣∣∣∣
= 5 · 10 ·

∣∣∣∣∣∣

1 2 3
4 5 6
7 8 8

∣∣∣∣∣∣
= 50 ·

∣∣∣∣∣∣

1 2 1
4 5 1
7 8 0

∣∣∣∣∣∣

= 50 ·

∣∣∣∣∣∣

1 1 1
4 1 1
7 1 0

∣∣∣∣∣∣
= 50 ·

∣∣∣∣∣∣

1 1 1
3 0 0
7 1 0

∣∣∣∣∣∣
= 150.

(46)

7.8. Singularity and determinants. Although it is not convenient to use (1) directly
for determinant computation, it is sometimes useful for the determinant of a simple
matrix A. Consider the determinant of En. For A = En, most terms of (1) vanish
except the term such that all of

a1σ(1), a2σ(2), . . . , anσ(n) (47)

are diagonal entries, that is, σ = e. Accordingly, there is a unique nonzero term, and
therefore

|En| = sgn(e)1 . . .1 = 1 (48)
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Similarly, for a diagonal matrix,
∣∣∣∣∣∣∣∣∣

a11 O
a22

. . .

O ann

∣∣∣∣∣∣∣∣∣

= sgn(e)a11a22 . . . ann = a11a22 . . . ann. (49)

Here, we consider a relationship between singularity of an n × n matrix A and its
determinant. If we perform elementary operations on A, how does the determinant |A|
change? The answer is that only the sign changes or multiplied by c or unchanged,
where c 6= 0. Therefore, the property that “|A| is 0 or not” is unchanged before and
after elementary operations. If A is nonsingular, then r(A) = n, thus it is transformed
into En by elementary operations, and as |En| = 1 6= 0, we have |A| 6= 0. To the
contrary, if A is singular, then r(A) = r < n, thus it is transformed into Fnn(r) by
elementary operations, and as |Fnn(r)| = 0, we have |A| = 0.

Theorem 7. Let A be a matrix of order n, then the following holds.

A is nonsingular ⇐⇒ |A| 6= 0
A is singular ⇐⇒ |A| = 0

(50)

7.9. Several important formulas. Here we give several important formulas for de-
terminants.

Theorem 8. Let A and B be matrices of order n, then

|AB| = |A||B|. (51)

Theorem 9. Let A be a matrix of order r and C be a matrix of order s, then
∣∣∣∣
A B
O C

∣∣∣∣ =
∣∣∣∣
A O
B′ C

∣∣∣∣ =
∣∣∣∣
A O
O C

∣∣∣∣ = |A||C|. (52)

Proof of Theorem 8. First we prove when A is nonsingular. As A is nonsingular, by
elementary row operations, we have

A −→ · · · −→ En. (53)

This is performed by multiplying several elementary matrices on the left, that is,
multiplying A−1 on the left. By the very same operation as (53) on AB, we have

AB −→ · · · −→ A−1AB = B. (54)

Incidentally, if the same elementary operation is performed on two matrices, then the
values of their determinants are changed similarly, and consequently, multiplied by the
same constant. Here, in (53), the determinant is multiplied by 1

|A| , and thus from (54),

it follows that

|AB| ·
1

|A|
= |B|. ∴ |AB| = |A||B|. (55)

Next let A be singular. Then AB is also singular, because if not, there exists
X = (AB)−1 and

ABX = XAB = En, (56)
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and therefore, by Chapter 5, Theorem 3 (the theorem concerning nonsingular matrices),

A−1 = BX. (contradiction) (57)

Accordingly, by Theorem 7, both sides of (51) are equal to 0. �

Proof of Theorem 9. Let us prove only the equality of the leftmost side and the
rightmost side of (52), because the other equalities can be proved similarly. Let A and
C be nonsingular. As A is nonsingular, performing elementary column operations on

the columns of

∣∣∣∣
A B
O C

∣∣∣∣ which A shares, we have

∣∣∣∣
A B
O C

∣∣∣∣
× 1

|A|

−→ · · · −→

∣∣∣∣
Er B
O C

∣∣∣∣ . (58)

By this operation, the value of the determinant is multiplied by 1
|A| . Next, by ele-

mentary column operations, a block B on the right side of Er is swept to be O. By
this operations, the value of the determinant is unchanged. Lastly, as C is nonsingular,

performing elementary column operations on the columns of

∣∣∣∣
A B
O C

∣∣∣∣ which C shares,

and transform C into Es. By this operation, the value of the determinant is multiplied
by 1

|C| . To summarize,

∣∣∣∣
Er B
O C

∣∣∣∣
×1

−→ · · · −→

∣∣∣∣
Er O
O C

∣∣∣∣
× 1

|C|

−→ · · · −→

∣∣∣∣
Er O
O Es

∣∣∣∣ = 1. (59)

By (58),(59),

∣∣∣∣
A B
O C

∣∣∣∣ ·
1

|A|
·

1

|C|
= 1. ∴

∣∣∣∣
A B
O C

∣∣∣∣ = |A||C|. (60)

Next let A or C be singular. Then

(
A B
O C

)
is also singular. Because if not, we

have
(

A B
O C

)(
X11 X12

X21 X22

)
=

(
X11 X12

X21 X22

)(
A B
O C

)
=

(
Er O
O Es

)
. (61)

Hence

CX22 = Es, X11A = Er, (62)

and therefore, by Chapter 5, Theorem 3, A and C are nonsingular ((contradiction).
Accordingly, by Theorem 7, the leftmost and the rightmost sides of (52) are equal to
0. �
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(note) For upper or lower triangular matrices, we have

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 ann

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . .
an1 an2 an3 . . . ann

∣∣∣∣∣∣∣∣∣∣

= a11a22 . . . ann. (63)

Because, for upper triangular matrices, by the equality of the leftmost and the right-
most sides of Theorem 9, the given determinant is decomposed into smaller upper
triangular determinants again and again, and consequently, equals to a11a22 . . . ann.
The lower triangular case is similar.

7.10. Cofactor expansion of determinants. In this section, we consider the method
to expand a determinant using several determinants of smaller order. Let A = (aij)
be a matrix of order n. Letting

A =
(
a1 . . . aj . . . an

)
, (64)

and by elementary vectors ei, write

aj =
n∑

i=1

aijei. (65)

Then by multilinearity with respect to columns (37) and (33) (the second law), we
have

|A| =

j)∣∣∣∣∣ a1 . . .

n∑

i=1

aijei . . . an

∣∣∣∣∣
=

n∑

i=1

j)∣∣ a1 . . . aijei . . . an
∣∣

=

n∑

i=1

aij
j)∣∣ a1 . . . ei . . . an

∣∣ .

(66)
Here, for simplicity, consider the i-th term of the sum. Interchange ei on the j-th
column by the left neighbor column again and again, then by (j−1) times repetitions,
ei is moved to the first column. Namely,

aij
j)∣∣ a1 . . . ei . . . an

∣∣ = (−1)j−1aij
∣∣ ei a1 . . . âj . . . an

∣∣ . (67)

Here, the symbol âj means that aj is removed. (“ ˆ ” is sometimes called exclusion
symbol.) Next, interchange the i-th row by the upper neighbor row again and again,
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then by (i− 1) times repetitions, the i-th row is moved to the first row, say,

(67) = (−1)i−1+j−1aij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ai1 . . . ai,j−1 ai,j+1 . . . ain
0 a11 . . . a1,j−1 a1,j+1 . . . a1n
0 a21 . . . a2,j−1 a2,j+1 . . . a2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

0 ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 an,1 . . . an,j−1 an,j+1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(68)

Now by Theorem 9, we have

(68) = (−1)i+jaij

∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1,j−1 a1,j+1 . . . a1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ai−1,1 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n

ai+1,1 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an,1 . . . an,j−1 an,j+1 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣∣

. (69)

The determinant in (69) is the determinant of the matrix obtained by removing the
i-th row and the j-th column from A. This determinant is called the (i, j) minor of A,
denoted by ∆ij . Furthermore, (−1)i+j∆ij is called the (i, j) cofactor of A, denoted by
ãij . Using this notation, by (66)–(69), we have the first formula (70) of the following
theorem.

Theorem 10. For a matrix A of order n,

|A| = a1j ã1j + a2j ã2j + · · ·+ anj ãnj (70)

|A| = ai1ãi1 + ai2ãi2 + · · ·+ ainãin. (71)

The second formula (71) is proved very similarly to the case of (70), or it is imme-
diately obtained by transposing both sides of (70).

The formula (70) is called the cofactor expansion of |A| along the j-th column, and
the formula (71) is called the cofactor expansion of |A| along the i-th row.

(exercise03) Compute the following determinant.

∣∣∣∣∣∣∣∣

2 3 −1 1
3 −1 1 2
−1 1 2 3
1 2 3 −1

∣∣∣∣∣∣∣∣
(72)
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(answer)

∣

∣

∣

∣

∣

∣

∣

∣

2 3 −1 1

3 −1 1 2

−1 1 2 3
1 2 3 −1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

2 3 −1 1

3 −1 1 2

−1 1 2 3
5 5 5 5

∣

∣

∣

∣

∣

∣

∣

∣

= 5

∣

∣

∣

∣

∣

∣

∣

∣

2 3 −1 1

3 −1 1 2

−1 1 2 3
1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= 5

∣

∣

∣

∣

∣

∣

∣

∣

3 4 0 2
2 −2 0 1

−3 −1 0 1

1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

cofactor expansion
=

along the 3rd column
5 · (−1)4+31

∣∣∣∣∣∣

3 4 2
2 −2 1
−3 −1 1

∣∣∣∣∣∣

= −5

∣∣∣∣∣∣

3 4 2
5 −1 0
−3 −1 1

∣∣∣∣∣∣

cofactor expansion
=

along the 2nd row

−5

(
(−1)2+15

∣∣∣∣
4 2
−1 1

∣∣∣∣+ (−1)2+2(−1)

∣∣∣∣
3 2
−3 1

∣∣∣∣
)

= −5(−30− 9) = 195.

(73)

(note) Determinants of order greater than 3 does not satisfy Sarrus’ rule.

7.11. An explicit formula for inverse matrices. So far, we have studied determi-
nant computation, and as a byproduct, we can obtain an explicit formula for inverse
matrices. The key formulas are (70), (71) and the following.

a1iã1j + a2iã2j + · · ·+ aniãnj = 0 (i 6= j) (74)

aj1ãi1 + aj2ãi2 + · · ·+ ajnãin = 0 (i 6= j) (75)

To show the above equalities, consider a matrix B obtained by replacing the j-th
column of A by the i-th column, and consider a matrix C obtained by replacing the
i-th row of A by the j-th row. Since B and C have two identical columns and rows,
respectively, their determinants are equal to 0. Then the cofactor expansion of |B|
along the j-th column gives (74) and the cofactor expansion of |C| along the i-th row
gives (75).

Here, for a matrix A of order n, consider the following matrix:

cof (A) =




ã11 ã12 . . . ã1n
ã21 ã22 . . . ã2n
. . . . . . . . . . . . . . . . . . . .
ãn1 ãn2 . . . ãnn


 . (76)

This matrix has the (i, j) cofactor of A as its (i, j) entry, and it is called the cofactor
matrix of A. The transpose of the cofactor matrix is called the adjugate matrix of A,
denoted by adj (A). In brief, adj (A) = t(ãij). Then we have

A adj (A) = adj (A)A = |A|En. (77)
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To clarify the entries,









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann

















ã11 ã21 . . . ãn1

ã12 ã22 . . . ãn2

. . . . . . . . . . . . . . . . . . . . .
ã1n ã2n . . . ãnn









=











|A| O

|A|

. . .

O |A|











, (78)









ã11 ã21 . . . ãn1

ã12 ã22 . . . ãn2

. . . . . . . . . . . . . . . . . . . . .
ã1n ã2n . . . ãnn

















a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . . . . . . . . . . .
an1 an2 . . . ann









=











|A| O

|A|

. . .

O |A|











. (79)

Indeed, in calculating the left-hand side of (78), the (i, i) entry is obtained by (71),
and the (j, i) entry (i 6= j) is obtained by (75). In calculating the left-hand side of
(79), the (j, j) entry is obtained by (70), and the (j, i) entry (i 6= j) is obtained by
(74).

Here, if A is nonsingular, then |A| 6= 0 by Theorem 7, and dividing (77) by |A|, we
have

A

(
1

|A|
adj (A)

)
=

(
1

|A|
adj (A)

)
A = En. (80)

Theorem 11. For a nonsingular matrix A,

A−1 =
1

|A|
adj (A) . (81)

(exercise04) Compute the inverse of the following matrix A:



4 5 6
7 8 8
1 2 3


 (82)

(answer)




4 5 6
7 8 8
1 2 3




−1

=

∣∣∣∣∣∣

4 5 6
7 8 8
1 2 3

∣∣∣∣∣∣

−1




∣∣∣∣
8 8
2 3

∣∣∣∣ −
∣∣∣∣
5 6
2 3

∣∣∣∣

∣∣∣∣
5 6
8 8

∣∣∣∣

−

∣∣∣∣
7 8
1 3

∣∣∣∣

∣∣∣∣
4 6
1 3

∣∣∣∣ −
∣∣∣∣
4 6
7 8

∣∣∣∣
∣∣∣∣
7 8
1 2

∣∣∣∣ −
∣∣∣∣
4 5
1 2

∣∣∣∣

∣∣∣∣
4 5
7 8

∣∣∣∣




=
1

3




8 −3 −8

−13 6 10
6 −3 −3



 .

(83)
(note) The inverse matrix formula (81) is important in the theory, and for the order
n ≤ 3, it is also sufficiently practical. For larger n, however, the method by elementary
operations is faster than this formula in many cases.
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7.12. Cramer’s rule. We can solve a system of linear equations for a nonsingular
n× n matrix A = (aij):

Ax = c (84)

by the inverse matrix formula. First multiplying both sides of this equation by A−1

on the left,

x = A−1c = |A|−1adj (A) c. (85)

Here, writing down the j-th component xj of x =




x1

...
xn


, we have

xj = |A|
−1 (ã1jc1 + ã2jc2 + · · ·+ ãnjcn) . (86)

Compare this with (70). Let |Aj| denote the determinant given by replacing the j-th
column of |A| by c. Then the numerator of (86) is the cofactor expansion of Aj along
the j-th column, and therefore

Theorem 12. (Cramer’s rule)

xj =
|Aj|

|A|
=

j)∣∣ a1 . . . c . . . an
∣∣

∣∣ a1 . . . an
∣∣ . (87)

Note that this formula is valid only for the case that A is nonsingular.

(exercise05) Using Cramer’s rule, solve the following system of linear equations.





3x1 −5x2 +x3 = 8
5x1 +3x2 −5x3 = 1
2x1 −2x2 +3x3 = 7

(88)

(answer)

|A| =

∣∣∣∣∣∣

3 −5 1
5 3 −5
2 −2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3 −2 1
5 8 −5
2 0 3

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

3 −1 1
5 4 −5
2 0 3

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

4 −1 1
0 4 −5
5 0 3

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣

4 −1 0
0 4 −1
5 0 3

∣∣∣∣∣∣
= 2(48 + 5) = 106.

(89)



18 7. DETERMINANTS AND THEIR APPLICATIONS

|A1| =

∣∣∣∣∣∣

8 −5 1
1 3 −5
7 −2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 −3 −2
1 3 −5
7 −2 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 0 −7
1 3 −5
7 −2 3

∣∣∣∣∣∣

= 18 + 14− 20 + 147 = 159.

|A2| =

∣∣∣∣∣∣

3 8 1
5 1 −5
2 7 3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3 8 4
5 1 0
2 7 5

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 1 −1
5 1 0
2 7 5

∣∣∣∣∣∣
=

∣∣∣∣∣∣

0 0 −1
5 1 0
7 12 5

∣∣∣∣∣∣

= −60 + 7 = −53.

|A3| =

∣∣∣∣∣∣

3 −5 8
5 3 1
2 −2 7

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3 −2 8
5 8 1
2 0 7

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

1 −1 1
5 4 1
2 0 7

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

1 −1 0
5 4 −4
2 0 5

∣∣∣∣∣∣

= 2(20 + 8 + 25) = 106.

∴ x1 =
|A1|

|A|
=

159

106
=

3

2
, x2 =

|A2|

|A|
=
−53

106
= −

1

2
, x3 =

|A3|

|A|
=

106

106
= 1,

i.e. x =
1

2




3
−1
2



 .

(89)
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7.13. Special determinants. There are a lot of beautiful determinants. In this sec-
tion, we show several examples of them. To begin with, we introduce a theorem to
prove the formulas stated below.

Theorem 13. (Factor theorem for several variables) For a polynomial p(x1, . . . , xn)
in the variables x1, . . . , xn, choose a variable, e.g. x1, and if a polynomial q(x2, . . . , xn)
in (n− 1) variables satisfies that p(q, x2, . . . , xn) = 0, then p(x1, . . . , xn) is divisible by
x1 − q(x2, . . . , xn).

7.13.1. Vandermonde determinants.∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

. . . . . . . . . . . . . . . . . . . . . . .
1 xn x2

n . . . xn−1
n

∣∣∣∣∣∣∣∣
=

∏

1≤i<j≤n

(xj − xi) (90)

(note) (1) The right-hand side is the difference product of n variables (24). (2) The
left-hand side is sometimes written in the transposed form.

Proof. On the left-hand side, letting xj = xi (i 6= j), the determinant has the identical
i-th and j-th row, and it vanishes. Therefore by the factor theorem for several variables,
the left-hand side is divisible by xj − xi. For all i, j satisfying 1 ≤ i < j ≤ n, there
are n(n − 1)/2 factors xj − xi, and every pair of them are relatively prime, thus the
left-hand side is divisible by the product of them:

∏

1≤i<j≤n

(xj − xi), (91)

that is, the right-hand side. Here, the total degrees of both sides are equal to n(n −
1)/2, and therefore the difference between both sides is a constant multiple. Since the
coefficients of x2x

2
3 . . . x

n−1
n in both sides are equal to 1, both sides coincide. �

7.13.2. Circulant determinants.∣∣∣∣∣∣∣∣∣∣

x0 x1 x2 . . . xn−1

xn−1 x0 x1 . . . xn−2

xn−2 xn−1 x0 . . . xn−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1 x2 x3 . . . x0

∣∣∣∣∣∣∣∣∣∣

=
∏

ωn=1

(x0 + ωx1 + ω2x2 + · · ·+ ωn−1xn−1) (92)

Here, the product on the right-hand side runs over n n-th roots of unity ω.

Proof. Take an arbitrary n-th root of unity ω. For j = 2, . . . , n, add the first column
by the j-th column multiplied by ωj−1 on the left-hand side. Then the (i, 1) entry is
expressed as

ωi−1(x0 + ωx1 + ω2x2 + · · ·+ ωn−1xn−1). (93)

Letting

x0 = −ωx1 − ω2x2 − · · · − ωn−1xn−1, (94)
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then the first column vanishes and the left-hand side also vanishes. Hence by the factor
theorem for several variables, the left-hand side is divisible by

g(ω) = x0 + ωx1 + ω2x2 + · · ·+ ωn−1xn−1. (95)

For n values of ω, every pair of g(ω)’s are relatively prime, and the left-hand side is
divisible by the product of g(ω)’s, i.e. the right-hand side. Here, the total degrees
of both sides are equal to n, and therefore the difference between both sides is a
constant multiple. Since the coefficients of xn

0 in both sides are equal to 1, both sides
coincide. �

7.13.3. Pfaffians. Let A be a skew-symmetric matrix (satisfying tA = −A) of order
n. If n is odd, |A| = 0, whereas if n is even, |A| is the square of some polynomial in
the entries of A. That is to say, letting

A =




0 a12 a13 . . . a1,n−1 a1n
−a12 0 a23 . . . a2,n−1 a2n
−a13 −a23 0 . . . a3,n−1 a3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−a1,n−1 −a2,n−1 −a3,n−1 . . . 0 an−1,n

−a1n −a2n −a3n . . . −an−1,n 0




, (96)

then there exist two polynomials p(a12, a13, . . . , an−1,n) in the entries of A, such that

|A| = [p(a12, a13, . . . , an−1,n)]
2
. (97)

One of the two polynomials p(a12, a13, . . . , an−1,n) with p(1, 1, . . . , 1) = 1 is called the
Pfaffian of A, denoted by pfA. Examples for small n follows.

pf

(
0 a
−a 0

)
= a pf




0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0


 = af − be+ cd

pf

















0 a12 a13 a14 a15 a16
−a12 0 a23 a24 a25 a26
−a13 −a23 0 a34 a35 a36
−a14 −a24 −a34 0 a45 a46
−a15 −a25 −a35 −a45 0 a56
−a16 −a26 −a36 −a46 −a56 0

















=

a12a34a56 − a12a35a46 + a12a36a45
−a13a24a56 + a13a25a46 − a13a26a45
+a14a23a56 − a14a25a36 + a14a26a35
−a15a23a46 + a15a24a36 − a15a26a34
+a16a23a45 − a16a24a35 + a16a25a34

(98)
(exercise06) (1) If A is a skew-symmetric matrix of odd order, then show that |A| = 0.
(2) Prove the first and the second equalities of (98).
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8.0. Binary operations. A set S is called closed under a binary operation if the
operation is defined on S and for every two elements of S, the result of the operation is
also in S. For example, the set of all integers Z is closed under addition, subtraction,
and multiplication, whereas it is not closed under division. In mathematics, various
operations and closed sets are often considered, and their properties are studied deeply.

8.1. Vector spaces. A field is, in short, a set closed under the four operations (division
by zero is excluded), and satisfies commutativity, associativity, and distributivity of
addition and multiplication.1 The following are important examples of fields:

Q = {all rational numbers}, R = {all real numbers},
C = {all complex numbers}.

(1)

They are called the field of rationals, the field of reals, and the field of complex numbers,
respectively.

Let K be a field. If V is a set closed under addition and scalar multiplication by the
element of K, and satisfied the following axioms [L1]–[L8], then V is called a vector
space over a scalar field (coefficient field) K.

1x+y = y+x, (x+y)+z = x+(y+z), xy = yx, (xy)z = x(yz), x(y+z) = xy+xz, (x+y)z = xz+yz.

1
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[L1] x+ y = y+ x (x, y ∈ V )
[L2] (x+ y) + z = x+ (y+ z) (x, y, z ∈ V )

[L3]
There exists a zero vector 0 in V such that

for every x ∈ V , x+ 0 = 0+ x = x

[L4]
For every x ∈ V , its inverse vector −x exists in V

and satisfies that x+ (−x) = (−x) + x = 0

[L5] k(x+ y) = kx+ ky (x, y ∈ V ; k ∈ K)
[L6] (k + l)x = kx+ lx (x ∈ V ; k, l ∈ K)
[L7] (kl)x = k(lx) (x ∈ V ; k, l ∈ K)
[L8] 1x = x (x ∈ V )

(2)

However, in almost every case (especially in this text), if V is closed under addition
and scalar multiplication, then the above axioms are satisfied automatically. Hence, it
is actually valid that the definition of a vector space is to satisfy the condition that V
is closed under addition and scalar multiplication, that is, satisfy the following:

For any x, y ∈ V and for any k ∈ K,

x+ y ∈ V
kx ∈ V.

(3)

If K = C, V is called a complex vector space, and if K = R, V is called a real vector
space. We present the general theory of vector spaces over arbitrary K, because what
K is does not influence the outline of the argument.

Elements of a vector space are called vectors. Vectors in a narrower sense handled
so far are sometimes called numerical vectors to avoid the confusion. Elements of K
are called scalars.

By [L2], the associative law of addition holds, and so the sum of several vectors does
not depend on the way to insert parentheses.

x1 + x2 + · · ·+ xs (4)

Hence parentheses are usually omitted. Furthermore, by [L1], the commutative law
of addition, the order of addition can be changed. The following are derived from the
axioms of vector spaces.

(A) (Uniqueness of the zero vector) There exists a unique zero vector in V .
(B) (Uniqueness of the inverse vector) For every element x ∈ V , there exists a unique
inverse vector −x.

(C) ((Two-sided) Cancellation law)
x+ z = y+ z =⇒ x = y; z+ x = z+ y =⇒ x = y (x, y, z ∈ V )

(D) 0x = 0 (x ∈ V ); k0 = 0 (k ∈ K)
(E) kx = 0 =⇒ x = 0 or k = 0 (x ∈ V ; k ∈ K)
(F) (−k)x = k(−x) = −(kx) (x ∈ V ; k ∈ K)
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A typical example of a vector space over K is Kn defined as below, however, there
are many other examples.2

Kn =













x1

.

..

xn









| x1, . . . , xn ∈ K



 , (5)

This is a complex vector space Cn if K = C, whereas it is a real vector space Rn if
K = R. In particular, R3 = V 3.

(exercise01) Are the following sets regarded as complex vector spaces or real vector
spaces?

(1) V =

{




x

x+ zi

z



 | x, z ∈ R

}
(2) V =

{




x

x+ zi

z



 | x, z ∈ C

}
(6)

(ans) (1) For any elements





x

x+ zi

z



 and





x′

x′ + z′i

z′



 of V , and any k ∈ R,





x

x+ zi

z



+





x′

x′ + z′i

z′



 =





x+ x′

x+ x′ + (z + z′)i
z + z′



 =





x̃

x̃+ z̃i

z̃



 ∈ V

k





x

x+ zi

z



 =





kx

kx+ kzi

kz



 =





x′′

x′′ + z′′i

z′′



 ∈ V.

(7)

Hence V is a real vector space. However, for i ∈ C,

i





x

x+ zi

z



 =





ix

−z + ix

iz



 /∈ V (Because the 1st or 3rd component is imaginary),

(8)
and therefore V is not a complex vector space.
(2) (Outline) Similarly to (1), since V is closed under addition and complex scalar
multiplication, it is a complex vector space. Hence it is also regarded as a real vector
space.

2Examples of vector spaces over K: (i) Mm,n(K): the vector space consisting of all m×n matrices

with entries in K, the zero vector is Om,n, the inverse of X ∈ Mm,n(K) is −X. In particular, write
Mnn(K) = Mn(K). (ii) K[t]: the vector space consisting of all polynomials in t with coefficients in

K: the zero vector is 0, the inverse of p(t) ∈ K[t] is −p(t). (iii) KX : the vector space consisting of all

functions from a nonempty set X to K, the zero vector is 0(x) = 0 (x ∈ X), the inverse of f ∈ KX is
−f = (−1)f . Here, we define that (f + g)(x) = f(x) + g(x) and (kf)(x) = kf(x) (x ∈ X).
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Real vector spaces

Complex vector spaces

(note) If V is a complex vector space, then it holds that, for any x, y ∈ V and for
any complex number c, x + y ∈ V and cx ∈ V . Hence it is clear that for any real
number k, kx ∈ V (because a real number is a complex number). Consequently, a
complex vector space is regarded as also a real vector space. Conversely, if V is a real
vector space and it holds that x ∈ V ⇒ ix ∈ V , then V is closed under complex scalar
multiplication, and under the assumption that the axioms with respect to complex
scalar multiplication hold, V is regarded also as a complex vector space.
(note) A singleton {0} is regarded as a special vector space, called the trivial vector
space or zero vector space. All vector spaces not being trivial are non-trivial vector
spaces.
(note) Hereafter, we use the symbols e1, e2, . . . , en as elements of a vector space, or
elementary vectors. The context determines which meaning is used.

8.2. Subspaces. Let V be a vector space over K. If a subset W of V is a vector space
over K with respect to the same operations as V , then W is called a subspace of V . In
other words, if W is closed under the operations (addition and scalar multiplication)
of V , then W is called a subspace of V .

The zero vector space {0} and V itself are subspaces of V . The other subspaces are
called proper subspaces.

(exercise02) Let V = V 3. Which of the following are subspaces of V .

(1) W1 =

{




t

t+ u

u



 | t, u ∈ R

}
(2) W2 =

{
t





1

3

5



+





3

3

1



 | t ∈ R

}

(3) W3 =

{




1

1
1



+ t





1

3
5



+ u





2

4
6



 | t, u ∈ R

}

(note) A subspace of V 3 is one of V 3 itself, a plane containing the origin, a line passing
the origin, or the origin.
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8.3. Linear independence. Let V be a vector space overK. For vectors a1, a2, . . . , as
of V , the expression:3

k1a1 + k2a2 + · · ·+ ksas (k1, . . . , ks ∈ K) (9)

is called a linear combination of a1, a2, . . . , as over K. Since V is closed under addition
and scalar multiplication, all linear combinations are contained in V . A relationship
among the vectors a1, a2, . . . , as:

k1a1 + k2a2 + · · ·+ ksas = 0 (10)

is called a linear relation(ship) among the vectors overK.4 This relation holds whenever
all coefficients k1, . . . , ks are equal to zero. Such a relation is called the trivial linear
relation. If there exists at least one nonzero coefficient, then it is called a non-trivial
linear relation over K.

The vectors a1, a2, . . . , as are defined to be linearly independent over K, if they have
no non-trivial linear relations over K, whereas they are linearly dependent over K, if
they have a non-trivial linear relation over K. The term “over K” is often omitted
whenever there is no danger of confusion.

This definition is a generalization of linear independence or dependence of vectors
in V 3.

The definition of linear independence of a1, a2, . . . , as is rewritten as follows: For
k1, . . . , ks ∈ K,

k1a1 + k2a2 + · · ·+ ksas = 0 ⇒ k1 = k2 = · · · = ks = 0 , (11)

which is equivalent to the first definition.

(exercise03) (1) Are the four vectors









1
2

3

4









,









2
3

4

1









,









3
4

1

2









,









4
1

2

3









linearly indepen-

dent?
(2) Show that the following two conditions are equivalent. (i) a1, . . . , as are linearly
dependent. (ii) Some of a1, . . . , as is expressed as a linear combination of the others.
(3) Show that if a1, . . . , as are linearly independent, then any choice ai1 , . . . , ait from
them are also linearly independent.
(ans) (1) Suppose that

k1









1

2
3

4









+ k2









2

3
4

1









+ k3









3

4
1

2









+ k4









4

1
2

3









=









0

0
0

0









. (12)

This is equivalent to








1 2 3 4
2 3 4 1

3 4 1 2

4 1 2 3

















k1
k2
k3
k4









=









0
0

0

0









, (13)

3If some term of (9) has the form +(−ki)ai, then it is usually written as k1a1+· · ·−kiai+· · ·+ksas.
4Then we say that a1, a2, . . . , as have a linear relation over K.
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which is solved by using elementary operations: k1 = k2 = k3 = k4 = 0. (Or calculating
the rank or determinant of the matrix, show that it is nonsingular, and therefore
k1 = k2 = k3 = k4 = 0.) Accordingly, the given vectors are linearly independent.

Theorem 1. Let a1, a2, . . . , as be linearly independent vectors. If a vector a is not
expressed as any linear combination of them, then a1, a2, . . . , as, a are linearly indepen-
dent.

Proof. Suppose a1, a2, . . . , as are linearly independent and a is not expressed as any
linear combination of them. Suppose a1, a2, . . . , as, a have a linear relation:

k1a1 + k2a2 + · · ·+ ksas + ka = 0. (14)

If k 6= 0, then we have

a = −
k1
k
a1 −

k2
k
a2 − · · · −

ks
k
as, (15)

which contradicts to the assumption. Hence k = 0. By (14),

k1a1 + k2a2 + · · ·+ ksas = 0. (16)

Since a1, a2, . . . , as are linearly independent, we have k1 = k2 = · · · = ks = 0. Hence
a1, a2, . . . , as, a are linearly independent. �

Theorem 2. Suppose c is expressed as a linear combination of b1, b2, . . . , bt, and
every bj is expressed as a linear combination of a1, a2, . . . , as. Then c is expressed as
a linear combination of a1, a2, . . . , as.

Proof. Suppose c =
∑t

j=1 kjbj and bj =
∑s

i=1 ljiai, then

c =

t∑

j=1

kj

s∑

i=1

ljiai =

t∑

j=1

s∑

i=1

kj ljiai =

s∑

i=1

t∑

j=1

kj ljiai =

s∑

i=1




t∑

j=1

kj lji


 ai. � (17)

8.4. Finite-dimensional vector spaces. If a vector space V has a property that
finite number of vectors in V can be selected, so that every vector in V is expressed as
a linear combination of the selected vectors, then V is called a finite-dimensional vector
space. If a vector space is not finite-dimensional, then it is called infinite-dimensional.
Hereafter, all vector spaces are assumed to be finite-dimensional.
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8.5. Bases of vector spaces. A sequence of vectors e1, e2, . . . , en in V is called a
basis of V if it satisfies the following properties:

I: e1, e2, . . . , en are linearly independent.
II: Any vector in V is expressed as a linear combination of e1, e2, . . . , en.

These properties are joined as follows:

III: Any vector in V is expressed uniquely (up to order) as a linear combination of
e1, e2, . . . , en.

(exercise04) Show that I and II ⇐⇒ III.

(ans) Proof. (⇒) Suppose I and II hold. By II, any vector in V is expressed as a linear
combination of ei’s. Then take any vector x in V , and suppose that it is expressed as
follows:

x = k1e1 + k2e2 + · · ·+ knen
x = l1e1 + l2e2 + · · ·+ lnen.

(18)

Subtracting both sides, we have

0 = (k1 − l1)e1 + (k2 − l2)e2 + · · ·+ (kn − ln)en. (19)

By I, e1, . . . , en are linearly independent, thus k1 − l1 = k2 − l2 = · · · = kn − ln = 0,
and therefore k1 = l1, k2 = l2, . . . , kn = ln. Hence III holds. �

Proof. (⇐) Suppose III holds. Then clearly II holds. Next letting

k1e1 + k2e2 + · · ·+ knen = 0, (20)

then by III, 0 is expressed uniquely, and therefore all coefficients are equal to zero.
This means that e1, . . . , en are linearly independent. �

(note) The elements of a basis are called basis vectors. The order of basis vectors is
sensitive. A basis is usually represented as 〈e1, e2, . . . , en〉 in 〈· · · 〉 brackets.

Theorem 3. Let V be a vector space, and a1, a2, . . . , ar be linearly independent vectors
in V . Then we can attach several vectors in V to the vectors, so that 〈a1, a2, . . . , ar+s〉
is a basis of V .

Proof. Since V is finite-dimensional, we can choose vectors b1, . . . , bn so that every
vector in V is expressible as a linear combination of them. If all of b1, . . . , bn are ex-
pressible by a1, . . . , ar, then finish the operation. Otherwise, there exists some bi which
is not expressible by a1, . . . , ar, then from Theorem 1, it follows that we have linearly
independent vectors a1, . . . , ar, bi. If all of b1, . . . , bn are expressible by a1, . . . , ar, bi,
then finish the operation. Otherwise, there exists some bj which is not expressible
by a1, . . . , ar, bi, then from Theorem 1, it follows that we have linearly independent
vectors a1, . . . , ar, bi, bj . Repeating this operation, we have linearly independent vec-
tors a1, . . . , ar, ar+1, . . . , ar+s such that all of b1, . . . , bn are expressible by them. Since
every vector in V are expressible by b1, . . . , bn, by Theorem 2, every vector in V are
expressible by a1, . . . , ar, ar+1, . . . , ar+s. Hence 〈a1, . . . , ar+s〉 is a basis of V . �
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By Theorem 3, non-trivial vector spaces have their bases. The zero vector space has
no bases.

8.6. Dimensions of vector spaces and basis extensions. We define the dimension
of a vector space as follows:

Theorem 4. Let V be a non-trivial vector space. There are many bases of V , however,
the number of basis vectors is a constant independent of the bases, determined by V .
The number of basis vectors is called the dimension of V , denoted by dimV .

Proof. ⇒ 9.1.

(note) The dimension of zero vector space is defined to be 0. Non-trivial vector spaces
have their bases, thus the dimensions of them are greater or equal to 1. Hence it holds
that dimV = 0 ⇐⇒ V = {0}.

Let V be a vector space, and W 6= {0} be a subspace of V . Take a basis 〈a1, . . . , ar〉
of W . Then 〈a1, . . . , ar〉 is linearly independent, thus by Theorem 3, a basis 〈a1, . . . , ar,
ar+1, . . . , ar+s〉 of V can be made. Such a basis of V is called an extension of a basis
of W .

Theorem 5. Let V be a vector space and W 6= {0} be a subspace of V . We have a
basis of V which is an extension of a basis of W .

8.7. Basis of Kn. Let e1, . . . , en be elementary vectors with n entries. Then 〈e1, . . . ,
en〉 is a basis of Kn. Thus it holds that

dimKn = n. (21)

There are many bases of Kn, and the following is a test whether the vectors a1, . . . , an
in Kn form a basis of Kn or not.

Theorem 6.

〈a1, a2, . . . , an〉 is a basis of Kn ⇐⇒
∣∣ a1 a2 . . . an

∣∣ 6= 0 (22)

Proof. ⇒ 9.2.

(exercise05) V =

{(
x y
z w

)
| x, y, z, w ∈ K

}
is a vector space over K. Confirm that

〈

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
〉 is a basis of V . Hence dimV = 4.
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8.8. Subspaces spanned by several vectors. Let V be a vector space over K, and
a1, . . . , as be vectors in V . Then the set:

W = {k1a1 + · · ·+ ksas | k1, . . . , ks ∈ K} (23)

is a subspace of V , which is called a subspace spanned by a1, . . . , as (or W is spanned
by a1, . . . , as), and is denoted by W = span{a1, . . . , as}.

5 The set {a1, . . . , as} is called
a generator of W . Using the terms, the condition II for bases is rewritten by II’ or II”’
as follows.

II’: V is spanned by e1, . . . , en.

II”: V = span{e1, . . . , en}.

(exercise06) Prove that the above mentioned W is a subspace of V .

(ans) For any vectors x = k1a1 + · · · + ksas and x′ = k′1a1 + · · · + k′sas, and for any
k ∈ K, we have

x+ x′ = (k1a1 + · · ·+ ksas) + (k′1a1 + · · ·+ k′sas)
= (k1 + k′1)a1 + · · ·+ (ks + k′s)as = k̃1a1 + · · ·+ k̃sas ∈W,

kx = k(k1a1 + · · ·+ ksas) = kk1a1 + · · ·+ kksas
= k′′1a1 + · · ·+ k′′s as ∈W. �

(24)

8.9. Sum of subspaces. Let V be a vector space over K, and let W1,W2 be two
subspaces of V . The sum of W1 and W2 is defined as

W1 +W2 = {w1 + w2 | w1 ∈W1, w2 ∈W2}. (25)

This is a subspace of V . The intersection W1 ∩W2 of W1 and W2 is also a subspace of
V .
(exercise07) Show that W1 +W2 and W1 ∩W2 are subspaces of V .

Proof. We show that W1+W2 is a subspace of V . Take any vectors w1+w2 and w′1+w′2
(w1, w

′
1 ∈ W1, w2, w

′
2 ∈ W2) in W1 + W2, and take any k ∈ K. Since W1 and W2 are

subspaces of V , we have w1 + w′1 ∈W1 and w2 + w′2 ∈W2. Hence

(w1 + w2) + (w′1 + w′2) = (w1 + w′1) + (w2 + w′2) ∈W1 +W2. (26)

Similarly, as W1 and W2 are subspaces, we have w1+w′1 ∈W1 and w2+w′2 ∈W2. Hence

k(w1 + w2) = kw1 + kw2 ∈W1 +W2. � (27)

Proof. Next we show that W1∩W2 is a subspace of V . Take any vectors x, y in W1∩W2

and any k ∈ K. From x, y ∈W1, it follows that x+ y ∈W1. Similarly, from x, y ∈W2

it follows that x + y ∈ W2. Therefore x + y ∈ W1 ∩ W2. In like manner, we have
kx ∈W1 and kx ∈W2, and therefore kx ∈W1 ∩W2. �

5W = span{a1, . . . , as} is the intersection of all subspaces containing {a1, . . . , as}. Hence W is
also the minimal subspace containing {a1, . . . , as}.



10 8. VECTOR SPACES AND THEIR BASES

+W2W1

V

W2W1 W2W1

(note) The intersection of more than two subspaces is also a subspace.
(note) W1 ∪W2 is, in general, not a subspace of V .

The dimensions of subspaces satisfy the following, which is called the dimension
formula for subspaces.

Theorem 7. Let W1 and W2 be subspaces of V , then it holds that

dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2). (28)

Proof. Let a basis of W1 ∩W2 be 〈a1, . . . , ar〉. By Theorem 5, extending this basis, we
have a basis of W1: 〈a1, . . . , ar, b1, . . . , bs〉 and a basis of W2: 〈a1, . . . , ar, c1, . . . , ct〉.
Here, we show that 〈a1, . . . , ar, b1, . . . , bs, c1, . . . , ct〉 is a basis of W1 +W2.

First we show it is linearly independent. Suppose there exists the following linear
relation:

k1a1 + · · ·+ krar + l1b1 + · · ·+ lsbs +m1c1 + · · ·+mtct = 0.
∴ k1a1 + · · ·+ krar + l1b1 + · · ·+ lsbs = −m1c1 − · · · −mtct.

(29)

Here, it is clear that the left-hand side represents an element of W1 and the right-hand
side represents an element of W2. Consequently, both sides represent an element of
W1 ∩W2. However, since 〈a1, . . . , ar, b1, . . . , bs〉 is a basis of W1, from the uniqueness
of expression of the left-hand side by the basis, it follows that l1 = · · · = ls = 0.
Returning to (29), we have

k1a1 + · · ·+ krar +m1c1 + · · ·+mtct = 0. (30)

Furthermore, as 〈a1, . . . , ar, c1, . . . , ct〉 is a basis of W2, we have

k1 = · · · = kr = m1 = · · · = mt = 0. (31)

Next, an arbitrary vector inW1+W2 is expressed in the form: w1+w2 (w1 ∈W1, w2 ∈
W2). Now w1 and w2 are expressed, by using the basis, as follows:

w1 = k1a1 + · · ·+ krar + l1b1 + · · ·+ lsbs,
w2 = k′1a1 + · · ·+ k′rar +m1c1 + · · ·+mtct.

(32)

Thus
w1 + w2 = (k1 + k′1)a1 + · · ·+ (kr + k′r)ar + l1b1 + · · ·+ lsbs

+m1c1 + · · ·+mtct,
(33)

say, w1 + w2 is expressed as a linear combination of a1, . . . , ar, b1, . . . , bs, c1, . . . , ct.
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Therefore we see that 〈a1, . . . , ar, b1, . . . , bs, c1, . . . , ct〉 is a basis of W1 +W2. Then
noting the dimensions of subspaces,

dimW1 + dimW2 = (r + s) + (r + t) = (r + s+ t) + r
= dim(W1 +W2) + dim(W1 ∩W2). �

(34)

8.10. Direct sum of subspaces. If an arbitrary vector in W = W1 +W2 is uniquely
expressed in the form:

w1 + w2 (w1 ∈W1, w2 ∈W2), (35)

then W is called the direct sum of W1 and W2, denoted by W = W1 ⊕ W2. This
definition is equivalent to the following: for w1 ∈W1 and w2 ∈W2,

w1 + w2 = 0 ⇒ w1 = w2 = 0. (36)

Theorem 8. Letting W = W1 +W2, we have

W = W1 ⊕W2
(1)
⇐⇒ W1 ∩W2 = {0}

(2)
⇐⇒ dimW = dimW1 + dimW2. (37)

Proof. (2) is clear by Theorem 7. We show (1).
(⇒) By reduction to absurdity. Let W = W1 ⊕W2. Suppose W1 ∩W2 6= {0}. Then
there exists a ∈W1 ∩W2 such that a 6= 0. Since W1 ∩W2 is a subspace, it is clear that
−a ∈ W1 ∩W2. Hence 0 ∈ W is expressed two ways as 0 = 0 + 0 = a + (−a) by the
sum of a vector in W1 and a vector in W2, which is a contradiction. �

(⇐) Let W1 ∩W2 = {0}. For an arbitrary vector w in W , suppose

w = w1 + w2 = w′1 + w′2 (w1, w
′
1 ∈W1, w2, w

′
2 ∈ W2). (38)

Then we have

W1 ∋ w1 − w′1 = w′2 − w2 ∈W2. (39)

Hence both sides are a vector in W1 ∩W2, say, 0.

∴ w1 − w′1 = w′2 − w2 = 0. ∴ w1 = w′1, w2 = w′2. (40)

This shows that W = W1 ⊕W2. �

8.11. Sum or direct sum of several subspaces. Let V be a vector space over K
andW1,W2, . . . ,Ws be subspaces of V . We define the sum of the subspaces W1, . . . ,Ws

as

W1 + · · ·+Ws = {w1 + · · ·+ ws | wi ∈Wi (i = 1, . . . , s)}. (41)

This is a subspace of V , because for any vectors w1 + · · · + ws and w′1 + · · · + w′s in
W1 + · · ·+Ws, and any k ∈ K, we have

(w1 + · · ·+ ws) + (w′1 + · · ·+ w′s) = (w1 + w′1) + · · ·+ (ws + w′s) ∈W1 + · · ·+Ws,
k(w1 + · · ·+ ws) = kw1 + · · ·+ kws ∈W1 + · · ·+Ws.

(42)
If an arbitrary vector in W = W1 + · · ·+Ws is uniquely expressed in the form:

w1 + · · ·+ ws (w1 ∈W1, . . . , ws ∈Ws), (43)
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then W is called the direct sum of W1, . . . ,Ws, denoted by W = W1 ⊕ · · · ⊕Ws. This
definition is equivalent to the following: for w1 ∈W1, . . . , ws ∈Ws,

w1 + · · ·+ ws = 0 ⇒ w1 = · · · = ws = 0. (44)

The following holds.

Theorem 9. A sequence made by joining bases of subspaces W1, . . . ,Ws forms a basis
of W = W1 ⊕ · · · ⊕Ws.

Proof. Let bases of W1, W2, . . . ,Ws be 〈a1, a2, . . . , ap〉, 〈b1, b2, . . . , bq〉, . . . , 〈c1, c2, . . . ,
cr〉, respectively. Joining these bases, we have E = 〈a1, . . . , ap, b1, . . . , bq, . . . , c1, . . . ,
cr〉, which shall be proved to be a basis of W = W1 ⊕ · · · ⊕Ws.

(To span W ) For any vector w in W , we have w = w1 + · · ·+ ws (wi ∈ Wi), and every
wi is expressed by E, therefore w is also expressed by E.

(Linear independence) Suppose k1a1 + · · · + kpap + l1b1 + · · · + lqbq + · · · + m1c1 +
· · · + mrcr = 0. Write k1a1 + · · · + kpap = w1, l1b1 + · · · + lqbq = w2, . . . , then
w1 + w2 + · · ·+ ws = 0. However, since W is the direct sum of Wi’s, by (44) w1 = w2 =
· · · = ws = 0. Therefore all coefficients k1, . . . , kp, . . . , m1, . . . , mr vanish.
Consequently, E is a basis of W . �

Theorem 10. Letting W = W1 + · · ·+Ws, we have

W = W1 ⊕ · · · ⊕Ws ⇐⇒ dimW = dimW1 + · · ·+ dimWs. (45)

Proof. (⇒) It is clear by Theorem 9.
(⇐) Suppose dimW = dimW1 + · · · + dimWs. As in the proof of Theorem 9, join
bases of W1,W2, . . . ,Ws to have E = 〈a1, . . . , ap, b1, . . . , bq, . . . , c1, . . . , cr〉, which we
prove to be a basis of W .

(To span W ) Similar to the proof of Theorem 9.

(Linear independence) If E is linearly dependent, then some vector in E is expressed
by the other vectors in E. Hence removing the vector from E, we have E′ which
spans W . Repeating this process, we have a basis E(u), however, from dimW =
dimW1 + · · ·+ dimWs it follows that u = 0. That is, E is a basis of W .

If an arbitrary vector w in W is expressed as w = w1 + · · · + ws = w′1 + · · · + w′s, then
expressing every wi and w′i by the above mentioned basis of Wi, w is expressed by E in
two ways:

w = k1a1 + · · ·+ kpap + l1b1 + · · ·+ lqbq + · · ·+m1c1 + · · ·+mrcr
w = k′1a1 + · · ·+ k′pap + l′1b1 + · · ·+ l′qbq + · · ·+m′

1c1 + · · ·+m′
rcr.

(46)

Since corresponding coefficients are the same, we have wi = w′i (i = 1, . . . , s). �
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(exercise08) Let W and X be subspaces of V = V 3 defined as follows.

W =








x
y
z



 | 2x+ 3y − 3z = 0



 , X =








x
y
z



 | x− y + 6z = 0
3x+ 2y + 3z = 0



 (47)

(1) Determine a basis of W +X . (2) Determine a basis of W ∩X .
(3) Is W +X the direct sum?
(ans) (1) First of all, to fine a basis of W , solve 2x+ 3y − 3z = 0.

(
2 3 −3

)
−→

(
1 3

2
−3

2

)
. ∴ x = α





− 3
2
1

0



+ β





3
2
0

1





= α̃





−3
2

0



+ β̃





3
0

2



. Hence a basis of W is 〈





−3
2

0



,





3
0

2



〉.

(48)

Next we solve the system of linear equations of X .
(

1 −1 6
3 2 3

)
−→

(
1 −1 6
0 5 −15

)
−→

(
1 −1 6
0 1 −3

)
−→

(
1 0 3
0 1 −3

)
.

∴ x = α





−3
3

1



. Hence a basis of X is 〈





−3
3

1



〉.

(49)
Finally, we find a basis of W + X . Consider the matrix consisting of bases of W

and X , and transform it by elementary column operations into a “stair-like” form.




−3 3 −3

2 0 3

0 2 1



 −→





−3 0 0

2 2 1

0 2 1



 −→





−3 0 0

2 1 0

0 1 0



 (50)

Therefore a basis of W +X is 〈





−3

2
0



,





0

1
1



〉.

(2) To determine W ∩X , it suffices to solve the following.





2x+ 3y − 3z = 0
x− y + 6z = 0
3x+ 2y + 3z = 0

(51)





2 3 −3
1 −1 6

3 2 3



 −→





1 −1 6
2 3 −3

3 2 3



 −→





1 −1 6
0 5 −15

0 5 −15



 −→





1 −1 6
0 1 −3

0 0 0



 −→





1 0 3
0 1 −3

0 0 0



. ∴ x = α





−3
3

1



.

(52)

Thus a basis of W ∩X is 〈





−3

3

1



〉.

(3) W +X is not the direct sum because W ∩X 6= {0}.
(Alternative solution) dim(W+X) = 2, dimW+dimX = 2+1 = 3. ∴ dim(W+X) 6=
dimW + dimX . Accordingly, W +X is not the direct sum.
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9. BASIC THEOREMS CONCERNING BASES

⋆ ⋆

keywords: bases of vector spaces, dimension, basis of Kn

9.1. Dimensions of vector spaces. To define the dimension of a vector space, the
following theorem is needed.

Theorem 1. Take a vector space V and fix it. Then the number of vectors contained
in a basis of V is determined by V , independent of the choice of a basis. This number
is called the dimension of V .

Proof. By reduction to absurdity. Let E = 〈e1, e2, . . . , em〉 and F = 〈f1, f2, . . . , fn〉
(m < n) be two bases of V . Then there exists a vector in e1, . . . , em, such that it is
not expressible by any linear combination of f2, . . . , fn. Because if all of e1, . . . , em are
expressible by f2, . . . , fn, then noting that f1 is expressible by e1, . . . , em, we see that
f1 is expressible by f2, . . . , fn, which contradicts linear independence of f1, . . . , fn.
Hence we choose a vector ei which is not expressible by f2, . . . , fn. Then we show that
F′ = 〈ei, f2, f3 . . . , fn〉 is a basis of V .

First of all, F′ is made by adding a vector not expressible by linearly independent
vectors, and therefore F′ is linearly independent. (Chapter 8, Theorem 1)

Next we show that any vector of V is expressible by F′. As F is a basis, ei =
c1f1 + · · ·+ cnfn. But if c1 = 0, then ei is expressed by f2, . . . , fn, which contradicts
the assumption, and thus, c1 6= 0. Hence f1 = 1

c1
(ei − c2f2 − · · · − cnfn), say, f1 is

expressed by F′. Also, F′ contains vectors f2, . . . , fn, and any vector of V is expressed
by f1, . . . , fn. Consequently, any vector of V is expressed by F′.

Therefore F′ is a basis of V . As we make ′ from F, we can again replace f2 by some
vector of e1, . . . , em, and have a new basis F′′ of V . Repeating this process, all vectors
of F are replaced by some vectors of e1, . . . , em again and again, and finally we have a
basis G = 〈ei1 , ei2 , . . . , ein〉 of V . However, since m < n, G contains the same vectors,
which contradicts that G is a basis. �

9.2. Bases of Kn. The following is a criterion to determine whether n vectors a1, a2,
. . . , an of Kn is a basis of Kn.

1
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Theorem 2. It holds that

〈a1, a2, . . . , an〉 is a basis of Kn ⇐⇒
∣∣ a1 a2 . . . an

∣∣ 6= 0. (1)

Proof. Denote the left-hand side condition by (L), and the right-hand side condition
by (R). Also consider the conditions below.

(R’): A matrix A =
(
a1 a2 . . . an

)
is nonsingular.

(I): Vectors a1, a2, . . . , an are linearly independent.
(II): Any vectors of Kn is expressed as a linear combination of a1, a2, . . . , an.

For these conditions, the following relations are proved, and consequently, we have the
equivalence of (L) and (R). Here, it suffices to show the equivalences (i) and (ii).

(L) ⇐⇒





(I)
(i)
⇐⇒

(II)
(ii)
⇐⇒

(R’) ⇐⇒ (R) (2)

Proof of (i): (⇐⇒). Letting A =
(
a1 a2 . . . an

)
, we show the contraposition

instead of (i), say,

A is singular ⇐⇒ a1, . . . , an are linearly dependent. (3)

By Chapter 6, Theorem 2, we have

A is singular ⇐⇒ Ax = 0 has non-trivial solutions. (4)

Since the right-hand side conditions of (3) and (4) are equivalent, (3) holds. �

Proof of (i): (⇒). We also give an alternate proof of the above mentioned (i), not using
the theory of systems of linear equations. First we prove (3):(⇒) instead of (i):(⇒).
Suppose A is singular and r(A) = r < n. By elementary operations, A is transformed
into Fnn(r). Hence by nonsingular matrices P,Q, PAQ = Fnn(r). Therefore

AQ = P−1Fnn(r) =




∗ · · · ∗ 0 · · · 0
∗ · · · ∗ 0 · · · 0
. . . . . . . . . . . . . . . . . .
∗ · · · ∗ 0 · · · 0


 . (5)

Here, the number of zero column vectors of the right-hand side is (n − r). Thus
letting the (r + 1)-th column of Q be q = t(q1, . . . , qn), we have Aq = 0. Hence
q1a1 + q2a2 + · · ·+ qnan = 0. By nonsingularity of Q, q 6= 0, say, there exists nonzero
qi. Consequently, a1, . . . , an are linearly dependent. �

Proof of (i): (⇐). Let A be nonsingular. Suppose k1a1 + k2a2 + · · · + knan = 0.
Letting k = t(k1, . . . , kn), we have Ak = 0, and A is nonsingular, we have k = 0, say,
k1 = k2 = · · · = kn = 0. Hence a1, . . . , an are linearly independent. �
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Proof of (ii): (⇒). Any vectors of Kn are expressed as linear combinations of
a1, a2, . . . , an. Hence elementary vectors with n entries: e1, e2, . . . , en are expressed as
linear combinations of a1, a2, . . . , an. This fact is written by matrices as

AQ =
(
a1 . . . an

)



q11 q12 . . . q1n
q21 q22 . . . q2n
. . . . . . . . . . . . . . . . . . .
qn1 qn2 . . . qnn


 =

(
e1 . . . en

)
= En. (6)

This shows that A is nonsingular. �

Proof of (ii): (⇐). Let A be nonsingular. Take any vector x of Kn. Letting
k1a1 + k2a2 + · · ·+ knan = x, by matrices,

Ak = x. (7)

Since A is nonsingular, the coefficients are determined by k = A−1x. Therefore x is
expressed as a linear combination of a1, a2, . . . , an. �

(exercise01) Let V = C4. Determine the necessary and sufficient condition for

〈









c

3
2

1









,









1

c

3

2









,









2

1
c

3









,









3

2
1

c









〉 to be a basis of V .

(ans)
∣∣∣∣∣∣∣∣

c 1 2 3
3 c 1 2
2 3 c 1
1 2 3 c

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

c 1 2 c+ 6
3 c 1 c+ 6
2 3 c c+ 6
1 2 3 c+ 6

∣∣∣∣∣∣∣∣
= (c+ 6)

∣∣∣∣∣∣∣∣

c 1 2 1
3 c 1 1
2 3 c 1
1 2 3 1

∣∣∣∣∣∣∣∣

= (c+ 6)

∣∣∣∣∣∣∣∣

c 1− c 1 1
3 c− 3 1− c 1
2 1 c− 3 1
1 1 1 1

∣∣∣∣∣∣∣∣
= (c+ 6)

∣∣∣∣∣∣∣∣

c− 1 −c 0 1
2 c− 4 −c 1
1 0 c− 4 1
0 0 0 1

∣∣∣∣∣∣∣∣

= (c+ 6)

∣∣∣∣∣∣

c− 1 −c 0
2 c− 4 −c
1 0 c− 4

∣∣∣∣∣∣
= (c+ 6)

[
(c− 1)(c− 4)2 + c2 + 2c(c− 4)

]

= (c+ 6)(c3 − 6c2 + 16c− 16) = (c+ 6)(c− 2)(c2 − 4c+ 8).
∴ c 6= −6, 2, 2± 2i.

(8)
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10. FUNDAMENTALS OF LINEAR MAPPINGS

⋆ 9 ⋆

keywords: mappings, transformations, surjections, injections,
bijections, 1-1 correspondences, compositions, inverses, restrictions,
extensions, linearity, linear mappings, sum, scalar multiplication,
isomorphisms, isomorphic, images of linear mappings, kernel, rank,

linear mappings by matrices, bases of image and kernel,
maximal system of linearly independent elements, minors,

dimension formula

10.1. Mappings and transformations. Let V and W be sets. An operation T that,
for every element x of V , T associates x with one element T (x) ofW is called a mapping
(function) from V to W . Denote this T symbolically as follows.

T : V −→W (1)

The sets V and W are called the domain and codomain of T , respectively. The subset:

{T (x) | x ∈ V } (2)

of W is called the image of T , denoted by ImT or T (V ). We sometimes write T (x) as
Tx. For a subset X of V , the set:

T (X) = {Tx | x ∈ X} (3)

is called the image of X by (under) T . For a subset Y , the set:

T−1(Y ) = {x ∈ V | Tx ∈ Y } (4)

is called the inverse image of Y by (under) T . If Y = {y}, then we write T−1({y}) =
T−1(y), say,

T−1(y) = {x ∈ V | Tx = y}. (5)

If T is a mapping from V to V , then T is called a transformation of V .
Let T be a mapping from V to W . If there exists x ∈ V such that Tx = y for every

element y ofW , then T is called a surjection. This definition is equivalent to ImT = W .
For x, x′ ∈ V , if x 6= x′ ⇒ Tx 6= Tx′ (or equivalently, Tx = Tx′ ⇒ x = x′), then T is
called an injection. If a surjection is also an injection, then it is called a bijection or
1-1 correspondence.

1
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Let V,W,X be sets. For a mapping T from V to W and another mapping S from
W to X , the composition S ◦ T of T and S is defined as follows.

(S ◦ T )x = S(Tx) (x ∈ V ) (6)

This is regarded as a mapping from V to X , denoted also by ST , and also called
a composite mapping. A composition of transformations is also called a composite
transformation.

If a mapping T : V −→ W is a bijection, then there exists a unique mapping
S : W −→ V such that

(ST )x = S(Tx) = x (x ∈ V )
(TS)y = T (Sy) = y (y ∈W ).

(7)

This S is called the inverse (mapping) of T , denoted by S = T−1. Then T is also the
inverse of S, and therefore (T−1)−1 = T .

For a mapping T : V −→W and a subset X of V , the restriction T |X of T onto X
is a mapping T |X : X −→ W such that T |X(x) = Tx (x ∈ X). If S is a restriction of
T onto some set, then T is called an extension of S.

10.2. Linear mappings. Let V and W be two vector spaces over K. If a mapping
T from V to W satisfies the following property called linearity, then T is said to be a
linear mapping from V to W .1

T (x+ y) = Tx+ Ty (x, y ∈ V )
T (kx) = k(Tx) (x ∈ V, k ∈ K)

(8)

In particular, a linear mapping from V to V is called a linear transformation. By (8),
a linear mapping T satisfies the following:

T (k1x1 + · · ·+ knxn) = k1Tx1 + · · ·+ knTxn. (9)

If a transformation T of V satisfies that

Tx = x (x ∈ V ), (10)

then T is called a identity transformation, denoted by IV or I, which is a linear
transformation of V .

(exercise01) (1) Show that T (x1 + · · ·+ xn) = Tx1 + · · ·+Txn and (9). (2) Show that
I is a linear transformation of V . (3) For a linear mapping T : V −→ W , show that
T0 = 0.

10.3. Composition, sum, and scalar multiplication. Let V,W,X be three vector
spaces over K, T be a linear mapping from V to W , and S be a linear mapping from
W to X . Then we can get a composition S ◦ T = ST by the above mentioned (6).

Theorem 1. The composition ST of a linear mapping T from V to W and a linear
mapping S from W to X is a linear mapping from V to X.

1We write k(Tx) = kTx if confusion does not occur.
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Proof. Since it is certain that ST is a mapping from V to X , we show the linearity of
ST . For any x, y ∈ V ,

(ST )(x+ y) = S(T (x+ y)) = S(Tx+ Ty) = S(Tx) + S(Ty)
= (ST )x+ (ST )y.

(11)

For any x ∈ V , k ∈ K,

(ST )(kx) = S(T (kx)) = S(kTx) = kS(Tx) = k(ST )x. (12)

�

Next, let S and T be linear mappings from V to W . The sum S + T of S and T
and the scalar multiplication aT (a ∈ K) of T are mappings from V to W defined by

(S + T )x = Sx+ Tx (x ∈ V )
(aT )x = a(Tx) (x ∈ V )

(13)

Theorem 2. For any linear mappings S, T from V to W , S + T and aT (a ∈ K) are
linear mapping from V to W .

Proof. (Case of S + T ) For any x, y ∈ V , we have

(S + T )(x+ y) = S(x+ y) + T (x+ y) = (Sx+ Sy) + (Tx+ Ty)
= (Sx+ Tx) + (Sy+ Ty)
= (S + T )x+ (S + T )y.

(14)

For any x ∈ V and k ∈ K, we have

(S + T )(kx) = S(kx) + T (kx) = kSx+ kTx
= k(Sx+ Tx) = k(S + T )x.

(15)

�

(exercise02) Show the case of aT .

Composition, sum, and scalar multiplication of linear mappings satisfy the following.

Theorem 3. Let T : V −→ W , T̃ : V −→ W , ˜̃T : V −→ W , S : W −→ X,
S̃ : W −→ X and R : X −→ Y be linear mappings, and let a ∈ K, then

(RS)T = R(ST )

T + T̃ = T̃ + T (T + T̃ ) + ˜̃T = T + (T̃ + ˜̃T )

S(T + T̃ ) = ST + ST̃ (S + S̃)T = ST + S̃T

a(T + T̃ ) = aT + aT̃
a(ST ) = (aS)T = S(aT )

(16)

Proof. The first equality is a basic property satisfied by general mappings. Here we
show the fourth equality.

(S(T + T̃ ))x = S((T + T̃ )x) = S(Tx+ T̃x) = S(Tx) + S(T̃x)

= (ST )x+ (ST̃ )x = (ST + ST̃ )x.
(17)

Hence S(T + T̃ ) = ST + ST̃ . �
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(exercise03) Show the rest equalities of (16).

By Theorem 3, the first formula (associative law for composition), any composition
of several linear mappings allows to remove parentheses. This is valid for composition
of general mappings. By the third formula (associative law for addition), any sum of
several linear mappings also allows to remove parentheses, and by the second formula
(commutative law for addition), the order of addition can be changed. Furthermore,
by the fourth-fifth formulas (distributive law), we have the following.

S(T + T̃ + · · ·+ ˜̃T ) = ST + ST̃ + · · ·+ S ˜̃T

(S + S̃ + · · ·+ ˜̃S)T = ST + S̃T + · · ·+ ˜̃ST
(18)

According to Theorems 1-2, any mappings made by finite number of compositions,
sums, and scalar multiplications of linear mappings are also linear mappings. This
fact is valid, of course, for linear transformations. In particular, for a linear transfor-
mation T of V , letting T l = TT . . . T (l times), we see that the following is a linear
transformation of V .

a0T
s + a1T

s−1 + · · ·+ as−1T + asI (a0, . . . , as ∈ K) (19)

10.4. Isomorphisms. If T is a linear mapping from V to W and also a bijection from
V to W , then T is called an isomorphism from V to W (between V and W ). For
vector spaces V and W , if there exists an isomorphism from V to W , then V is called
isomorphic to W (V and W are isomorphic), denoted by V ≃W .

(note) The inverse of an isomorphism from V to W is an isomorphism from W to V .

Theorem 4. For vector spaces V and W over K, it holds that

V ≃W ⇐⇒ dimV = dimW (20)

Theorem 4’. Let V ≃ W and φ : V −→ W be an isomorphism. For every basis
{e1, e2, . . . , en}, {φ(e1), φ(e2), . . . , φ(en)} is a basis of W .

Proof of Theorem 4’. (To span W .) As φ is an isomorphism, it is of course surjection.
Hence for any y ∈ W , there exists x ∈ V such that φ(x) = y, and x is expressed as
x = k1e1 + · · ·+ knen. Therefore

y = φ(x) = φ(k1e1 + · · ·+ knen) = φ(k1e1) + · · ·+ φ(knen)
= k1φ(e1) + · · ·+ knφ(en).

(21)

(Linear independence) Letting k1φ(e1) + · · · + knφ(en) = 0, then k1φ(e1) + · · · +
knφ(en) = φ (k1e1 + · · ·+ knen) = 0. As φ is an isomorphism, it is injection, thus
k1e1 + · · ·+ knen = 0, and therefore k1 = · · · = kn = 0. �

Proof of Theorem 4. (⇒) Letting V ≃ W , and φ : V −→ W be an isomor-
phism. By Theorem 4’, we can make a basis 〈φ(e1), φ(e2), . . . , φ(en)〉 of W from a
basis 〈e1, e2, . . . , en〉 of V . Hence dimV = n = dimW .
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(⇐) Let dimV = dimW , then we can take a basis 〈e1, . . . , en〉 of V and a basis
〈f1, . . . , fn〉 of W . Here, take a linear mapping φ : V −→ W defined by φ(ej) = fj
(j = 1, . . . , n), then it is an isomorphism from V to W . Indeed, for an arbitrary
x = k1e1 + · · ·+ knen ∈ V , φ is defined as follows.

φ(x) = k1f1 + · · ·+ knfn (22)

Now for any x, y = l1e1 + · · ·+ lnen ∈ V , and k ∈ K, we have

φ(x+ y) = φ((k1e1 + · · ·+ knen) + (l1e1 + · · ·+ lnen))
= φ((k1 + l1)e1 + · · ·+ (kn + ln)en)
= (k1 + l1)f1 + · · ·+ (kn + ln)fn
= (k1f1 + · · ·+ knfn) + (l1f1 + · · ·+ lnfn)
= φ(x) + φ(y),

φ(kx) = φ(k(k1e1 + · · ·+ knen)) = φ(kk1e1 + · · ·+ kknen)
= kk1f1 + · · ·+ kknfn = k(k1f1 + · · ·+ knfn)
= kφ(x).

(23)

Hence φ is a linear mapping form V to W . Next we show that φ is a bijection. First,
by

x = k1e1 + · · ·+ knen 6= l1e1 + · · ·+ lnen = y

⇐⇒ φ(x) = k1f1 + · · ·+ knfn 6= l1f1 + · · ·+ lnfn = φ(y)
(24)

φ is an injection. Second, for any x̃ = k1f1 + · · · + knfn ∈ W , there exists x =
k1e1+ · · ·+knen such that φ(x) = x̃, thus φ is a surjection. Consequently, φ : V −→W
is an isomorphism, and therefore V ≃W . �

10.5. Images and kernels of linear mappings. Let T be a linear mapping from V
to W . The image ImT = T (V ) of T is defined to be the above mentioned (2). More
generally, for a subspace X of V , the image T (X) of X by T is defined to be (3).
Also, for a subspace Y of W , the inverse image T−1(Y ) of Y by T is defined to be (4).
Especially,

T−1(0) = {x ∈ V | Tx = 0} (25)

is called the kernel of T , denoted by KerT .

Theorem 5. (i) ImT is a subspace of W . (ii) Ker T is a subspace of V .
(iii) Let X be a subspace of V , then T (X) is a subspace of W .
(iv) Let Y be a subspace of W , then T−1(Y ) is a subspace of V . ((i) and (ii) are special
cases of (iii) and (iv), respectively.)

Proof. It suffices to prove that every case is closed under addition and scalar multipli-
cation. (i) Take any elements x′, y′ of ImT , then there exists elements x, y ∈ V which
represent x′ = Tx, y′ = Ty. Therefore x′ + y′ = Tx + Ty = T (x + y) ∈ ImT . Also,
take any scalar k, then kx′ = kTx = T (kx) ∈ ImT . Hence ImT is a subspace of W .

(ii) Take any elements x, y of Ker T . Then T (x + y) = Tx + Ty = 0 + 0 = 0, and
thus x + y ∈ KerT . Further, for any scalar k, T (kx) = kTx = k0 = 0, and therefore
kx ∈ Ker T . Hence KerT is a subspace of V .
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(iii) Similar to (i).

(iv) Take any elements x, y of T−1(Y ). Since Tx, Ty ∈ Y , T (x + y) = Tx + Ty ∈ Y .
Hence x + y ∈ T−1(Y ). Further, for any scalar k, T (kx) = kTx ∈ Y , and therefore
kx ∈ T−1(Y ). Hence T−1(Y ) is a subspace of V . �

(Definition) dim ImT is called the rank of T , denoted by r(T ).

T

0
Im T or

T(V)
Ker T

WV

Theorem 6. Let T be a linear mapping from V to W , then

T is an isomorphism ⇐⇒ KerT = {0} and ImT = W. (26)

Proof. If T is a linear mapping, then

T is an isomorphism ⇐⇒ T is a bijection
⇐⇒ T is a surjection and also an injection,

(27)

and it holds that

T is a surjection ⇐⇒ ImT = W. (28)

Hence, to prove Theorem 6, it suffices to show that

T is an injection ⇐⇒ KerT = {0} (29)

(⇒) Let a linear mapping T be an injection. Since T is a linear mapping, T0 = 0.
Since T is an injection, if x 6= 0, then Tx 6= 0. Hence kerT = {0}.

(⇐) Let a linear mapping T satisfy kerT = {0}. Suppose Tx = Ty. Then Tx− Ty =
T (x− y) = 0. ∴ x− y ∈ kerT = {0}. ∴ x = y. Hence T is an injection. �

(exercise04) (1) Let V = V 3 = R3, W = {all real 2× 2 matrices}, then V and W

are regarded as real vector spaces. Define a mapping T : V −→ W by T





x

y

z



 =

(
x y
y z

)
, then show that T is a linear mapping.

(2) Let Y = {all real symmetric 2× 2 matrices}, then show that Y is a subspace of
W . Also, show that a mapping T : V −→ Y defined by (1) is an isomorphism.
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10.6. Linear mappings determined by matrices. Let V = Kn and W = Km.
Take an m× n matrix A with entries in K. Define a mapping TA from V to W by

TA(x) = Ax (x ∈ V ). (30)

TA is a linear mapping from V to W , which is called the linear mapping (matrix
mapping) determined by A. If a linear mapping T is expressed as T = TA for some
matrix A, then A is called the matrix of a linear mapping T .

(exercise05) Show that TA is a linear mapping.

Actually, it is known that the converse of (exercise05) holds, say,

Theorem 7. Let V = Kn and W = Km. Any linear mapping from V to W is
represented as TA by some matrix A.

Proof. Take an arbitrary linear mapping T from V to W . Denote by e1, e2 . . . , en the
elementary vectors of V . Letting Tej = aj , and determine a matrix A by

A =
(
a1 a2 . . . an

)
. (31)

Then for any x = x1e1 + · · ·+ xnen ∈ V , by the linearity of T , we have

Tx = T (x1e1 + · · ·+ xnen) = T (x1e1) + · · ·+ T (xnen)
= x1Te1 + · · ·+ xnTen = x1a1 + · · ·+ xnan.

(32)

On the other hand, we have

Ax =
(
a1 a2 . . . an

)



x1

...
xn


 = x1a1 + · · ·+ xnan. (33)

Hence Tx = Ax, and therefore T = TA. �

Compositions, sums, and scalar multiplications of matrix mappings satisfy the fol-
lowing.

Theorem 8. Let A,C be an m× n matrix, B be an n× p matrix, and a ∈ K, then

TATB = TAB

TA + TC = TA+C

aTA = TaA.
(34)

Proof. Show the first equality. For any x ∈ Kp,

(TATB)x = TA(TB(x)) = A(Bx) = (AB)x = TAB(x). (35)

Hence TATB = TAB . �

(exercise06) Show the second and the third equality of (34).
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10.7. Bases of the image and the kernel of TA. Let A be an m × n matrix.
Consider the image and the kernel of the linear mapping determined by A:

TA : Kn −→ Km. (36)

First of all, if A is represented as (31), then the image of TA:

ImTA = {Ax | x ∈ Kn} (37)

is represented as follows.

ImTA = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ K} = span{a1, . . . , an} (38)

Thus ImTA is the subspace of Km spanned by column vectors. To find a basis of it,
it is a good way to perform elementary column operations on A to get a ”stair-like”
shape with nonzero entries. Then all columns each of which is not a zero vector form
a basis of ImTA. The reason is as follows. When elementary column operation is
performed on a matrix, every column vector after the operation is represented by the
column vectors before the operation. Since the inverse of a column operation is also
a column operation, every column vector before the operation is represented by the
column vectors after the operation. Accordingly, the subspace spanned by the columns
before the operation, and the subspace spanned by the columns after the operation, are
the same at all. Hence if all column vectors except zero vectors are linearly independent
after operations, then they form a basis of ImTA. Especially, if nonzero entries form
a ”stair-like” shape, they are clearly independent, and thus all column vectors except
zero vectors are linearly independent. Hence these column vectors form a basis of
ImTA.

In addition, if there is r ”stair-like” column vectors, then the matrix is transformed
into Fmn(r). Hence the dimension of ImTA is equal to the rank of A.

Theorem 9. It holds that

dim ImTA = r(TA) = r(A). (39)

Next, noting the kernel of TA:

Ker TA = {x ∈ Kn | Ax = 0} (40)

we see that it is nothing but the set of all solutions to Ax = 0. Hence if the general
solution is determined to be

x = α1g1 + α2g2 + · · ·+ αsgs (41)

using elementary operations, then 〈g1, g2, . . . , gs〉 is a basis of kerTA. (Linear indepen-
dence is clear from their form.) Here, by Chapter 6, Theorem 1, we have s = n− r(A).
Consequently, we have the following.

Theorem 10. Let A be an m× n matrix, then

dimKer TA = n− r(A). (42)
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This is nothing but the dimension formula (Theorem 12) for T = TA.

(exercise07) Let A =





3 1 4 2

−1 0 −1 0
1 1 2 2



. Find bases of the image and kernel of TA.

(ans) (Basis of ImTA) Transforming A by elementary column operations,

A −→




1 3 4 2
0 −1 −1 0
1 1 2 2


 −→




1 3 4 2
0 −1 −1 0
1 1 2 2


 −→




1 0 0 0
0 −1 −1 0
1 −2 −2 0




−→




1 0 0 0
0 −1 0 0
1 −2 0 0



.

(43)

Hence a basis of ImTA is 〈





1

0
1



,





0

−1
−2



〉.

(Basis of kerTA) Solve Ax = 0. Transforming A by elementary row operations,

A −→



−1 0 −1 0
3 1 4 2
1 1 2 2


 −→




1 0 1 0
3 1 4 2
1 1 2 2


 −→




1 0 1 0
0 1 1 2
0 1 1 2




−→




1 0 1 0
0 1 1 2
0 0 0 0



. ∴ x = α




−1
−1
1
0


+ β




0
−2
0
1


.

(44)

Hence a basis of kerTA is 〈









−1

−1

1
0









,









0

−2

0
1









〉.

(note) A basis is not uniquely determined, and thus there are many other answers.
For example, to find a basis of the image, it suffices to choose column vectors as much
as possible, and for such a purpose, apply elementary row operations on A to make
nonzero entries ”stair-like” shape and select columns containing ”stair corner” from
the original A. This method is effective when the kernel is also needed, but column
exchange for the kernel should be warned.

10.8. Ranks of matrices, maximal system of linearly independent elements,

minors. For a subset S of a vector space V , consider all subspaces of V containing
S, and take the intersection of them, then we have a new subspace W of V . This is
called the subspace of V spanned by S, denoted by W = span(S). This is, in fact, the
minimum subspace containing S. In other words, span(S) is a subspace consisting of
all possible linear combinations of the elements of S.

Now, vectors e1, e2, . . . , er chosen from S satisfy the following two conditions, then
e1e2, . . . , er are called a maximal system of linearly independent elements of S.

I: e1, e2, . . . , er are linearly independent.
II: Any vector in S is expressed as a linear combination of e1, e2, . . . , er.
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This definition is very similar to the definition of bases, and consequently, every max-
imal system of linearly independent elements of S is shown to be a basis of span(S).

Let A be an m × n matrix, and S be the set of all column vectors of A. From the
above consideration and Section 6, a maximal system of linearly independent elements
of S is a basis of the subspace spanned by column vectors, say, ImTA. Consequently, the
maximum number of linearly independent column vectors of A is equal to dim ImTA =
r(A).2 This argument can be applied to B = tA. the maximum number of linearly
independent column vectors of B (= the maximum number of linearly independent row
vectors) is equal to dim ImTB = r(B). Here as r(B) = r(tA) = r(A), the maximum
number of liner independent column/row vectors of A is equal to r(A).

Furthermore, we can associate r(A) with determinants. Taking r rows and r columns
from A, we have a determinant of order r, which is called an r × r minor of A. There
are

(
m
r

)
×
(
n
r

)
r×r minors in A. Here, for fixed r, the property that all r×r minors are

equal to 0, is preserved under elementary operations.3 In other words, the property
that there exists a nonzero r× r minor is also preserved under elementary operations.
Consequently, the maximum order s(A) of a nonzero minor is also preserved under such
operations. Thus repeating elementary operations, we have A −→ · · · −→ F = Fmn(r),
then it is clear that r(F ) = s(F ), and therefore r(A) = s(A).

Theorem 11. For every m × n matrix A, the following quantity are the same. (i)
r(A). (ii) dim ImTA = r(A). (iii) The maximum number of linearly independent
column vectors. (iv) The maximum number of linearly independent row vectors. (v)
The maximum order of a nonzero minor.

10.9. The dimension formula. For kernels and images of linear mappings, we have
the following formula, which is known as the dimension formula for linear mappings.

Theorem 12. Let T : V −→W be a linear mapping, then

dimV = dim ImT + dimKerT. (45)

dim ImT can be written as r(T ) for short.

2If the maximum number of linearly independent column vectors are selected, then by Chapter 8,

Theorem 1, the other column vectors are represented by those vectors. Hence they form a maximum
system of linearly independent elements.

3To prove this, it suffices to show that if an elementary operation A −→ B is performed, then every

r × r minor ∆ of B is expressed by a linear combination of r × r minors of A. If a used elementary
operations is an interchange or scalar multiplication, it is easy to show. Consider an elementary

operation that adds the j th row multiplied by c, to the i th row. Only the case that ∆ contains the
i th row should be confirmed. Then we have ∆ = ∆1 + c∆2. Here, ∆1 is an r × r minor made by

choosing the same rows and columns as ∆, from A. ∆2 is made by interchanging th i th row and the

j th row, thus it is signed r × r minor of A, or the j th row occurs two times, which vanishes. The
proof is completed. This argument is applicable to the column case. �
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Proof. Let E = 〈e1, . . . , es〉 be a basis of kerT , and let Ẽ = 〈e1, . . . , en〉 be a basis
of V , which is an extension of E. Further, let Tei = fi (i = s + 1, . . . , n). Then we
show that F = 〈fs+1, . . . , fn〉 is a basis of ImT . Take an arbitrary element y of ImT .

Then there exists an element x of V such that Tx = y. Here x is represented by Ẽ as
x = k1e1 + · · ·+ knen, and therefore, y is represented by F as follows.

y = Tx = T (k1e1 + · · ·+ knen) = k1Te1 + · · ·+ ksTes + ks+1Tes+1 + · · ·+ knTen
= ks+1Tes+1 + · · ·+ knTen = ks+1fs+1 + · · ·+ knfn

(46)
Next we show that the elements of F are linearly independent. Let ks+1fs+1 +
ks+2fs+2 + · · ·+ knfn = 0, then as Tei = fi, we have

0 = ks+1fs+1 + · · ·+ knfn = ks+1Tes+1 + · · ·+ knTen
= T (ks+1es+1 + · · ·+ knen)

(47)

That is, T (ks+1es+1 + · · ·+ knen) = 0. This means that x = ks+1es+1 + · · ·+ knen ∈
kerT . Hence x is represented also by E, a basis of kerT . Consequently,

x = ks+1es+1 + · · ·+ knen = k1e1 + · · ·+ kses, (48)

and therefore k1e1 + · · ·+ kses − ks+1es+1 − · · · − knen = 0. Since Ẽ = 〈e1, . . . , en〉 is
a basis, k1 = k2 = · · · = kn = 0. Especially, as ks+1 = · · · = kn = 0, the elements of F
are linearly independent.

Accordingly, F is a basis of ImT . Hence dim ImT = n−s. Also, recall dimkerT = s,
dimV = n. From this it follows that dim ImT + dimkerT = dimV . �

Finally, we give a corollary of this theorem. Let X be a subspace of V . Apply
Theorem 12 to the restriction of T onto X , say, T |X , then

dimX = dim ImT |X + dimKerT |X (49)

Here, noting that ImT |X = T (X), kerT |X = X ∩ kerT , we have the following.

Theorem 12’. For a linear mapping T : V −→W , and a subspace X of V , we have

dimX = dim ImT |X + dimKerT |X (50)

dimX = dimT (X) + dim(X ∩Ker T ). (51)

(exercise08) Let T be a linear transformation of V . Show that if kerT = ImT , then
dimV is even.
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11.1. Bases and isomorphisms. Throughout this chapter, let V andW be two linear
spaces over K, and the dimensions of them be n and m, respectively. Let T : V −→W
be a linear mapping from V to W . Let E = 〈e1, e2, . . . , en〉 and Ẽ = 〈ẽ1, ẽ2, . . . , ẽn〉

be two bases of V , and let F = 〈f1, f2, . . . , fn〉 and F̃ = 〈f̃1, f̃2, . . . , f̃n〉 be two bases
of W .

Every element x of V is expressed uniquely by the linear combination of the basis
E as follows.

x = x1e1 + x2e2 + · · ·+ xnen = Ex ( x =




x1

...
xn


 ) (1)

(Matrix calculation containing bases is performed regarding bases as row vectors.) By
this equality, a mapping that corresponds x to x is determined:

φE : V −→ Kn

x 7−→ x
(2)

This mapping is an isomorphism, called the isomorphism determined by the basis E.
Similarly, by the following equality:

x = x̃1ẽ1 + x̃2ẽ2 + · · ·+ x̃nẽn = Ẽx̃ ( x̃ =




x̃1

...
x̃n


 ) (3)

the isomorphism determined by Ẽ is also defined.
Here notice that x and x̃ are corresponding by an intermediation of x, that is,

x̃ 7−→ x 7−→ x (4)

This is represented by mappings as

x = φE(φ
−1

Ẽ
(x̃)) = (φE ◦ φ

−1

Ẽ
)(x̃). (5)

1
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This mapping is a composition of isomorphisms, and thus, it is an isomorphism. Hence
it holds that x = P x̃, and is called the matrix of a base change from E to Ẽ. In addition,
P satisfy that Ẽ = EP . We show this below.

Since x = P x̃,we have Ex = E(P x̃) = (EP )x̃.

Also, as x = Ex = Ẽx̃, (EP )x̃ = Ẽx̃.

As this holds for all x̃ ∈ Kn, EP = Ẽ. �

(6)

Similar consideration is possible for linear space W and its two bases F and F̃. That
is, for y ∈ W , by y = Fy we have a correspondence y 7−→ y, and by y = F̃ỹ, we have
y 7−→ ỹ. Then the matrix Q of a base change from F to F̃ is given by y = Qỹ and
satisfies F̃ = FQ.

(exercise01) Let V = {all polynomials in t of degree less or equal to 3}, and two bases

E = 〈1, t, t2, t3〉 and Ẽ = 〈t2 + 1, t2 − 1, t3 + t, t3 − t〉 are given.
(1) For p = at3 + bt2 + ct+ d, determine p = φE(p) and p̃ = φ

Ẽ
(p).

(2) The matrix P of a base change from E to Ẽ.

(ans) (1) By p = Ep, we have

at3 + bt2 + ct+ d =
(
1 t t2 t3

)



d
c
b
a


. ∴ φE(p) =




d
c
b
a


. (7)

Similarly, by p = Ẽp̃, letting p̃ =




p̃1
p̃2
p̃3
p̃4


, we have

at3 + bt2 + ct+ d =
(
t2 + 1 t2 − 1 t3 + t t3 − t

)



p̃1
p̃2
p̃3
p̃4




= (p̃3 + p̃4)t
3 + (p̃1 + p̃2)t

2 + (p̃3 − p̃4)t+ (p̃1 − p̃2).

∴ p̃1 = b+d
2 , p̃2 = b−d

2 , p̃3 = a+c
2 , p̃4 = a−c

2 . ∴ φ
Ẽ
(p) =




b+d
2

b−d
2

a+c
2

a−c
2


.

(8)

(2) From Ẽ = EP , it follows that

(

t2 + 1 t2 − 1 t3 + t t3 − t
)

=
(

1 t t2 t3
)









1 −1 0 0
0 0 1 −1

1 1 0 0

0 0 1 1









.

∴ P =









1 −1 0 0

0 0 1 −1
1 1 0 0

0 0 1 1









.

(9)
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11.2. Bases and linear mappings. Next, we consider a linear mapping T . If x and
y satisfy y = Tx, then what relation x and y satisfy? Here, a correspondence from x

to y is represented in the following diagram moving from Kn to Km,

V
T
−→ W

↑ φ−1
E

↓ φF

Kn Km

(10)

which gives a composition

x 7−→ x 7−→ y 7−→ y. (11)

Since this is a composition of linear mappings, it is a linear mapping, and therefore it
is represented by a matrix A as

y = Ax. (12)

This matrix A is called the matrix of T with respect to bases E and F, and satisfies
that TE = FA. We show this below. Here, TE means that

TE = T
(
e1 e2 . . . en

)
=
(
Te1 Te2 . . . Ten

)
. (13)

First of all,

y = Tx, (14)

and the left-hand side and the right-hand side are calculated as

Tx = T (Ex) = T (x1e1 + · · ·+ xnen)
linearity of T

= x1(Te1) + · · ·+ xn(Ten) = (TE)x,
(15)

y = Fy = F(Ax) = (FA)x. (16)

By (14),(15),(16)

(TE)x = (FA)x. (17)

This is valid for any element of x of Kn, thus

TE = FA. � (18)

This argument is possible for the matrix of T with respect to Ẽ and F̃, if ỹ = Bx̃,
then T Ẽ = F̃B.

(note) If V = W and E = F, then the matrix of T with respect to E and F is said to
be simply the matrix of T with respect to E.
(exercise02) Let V , E, Ẽ be as in (exercise01), and let

W = { all polynomials in t of degree less or equal to 2}. (19)

Take two bases F = 〈1, t, t2〉, F̃ = 〈t2 + 1, t2 − 1, t〉. Let T be a linear mapping from V
to W defined by T (p(t)) = p′(2t). (1) Determine the matrix A of T with respect to E

and F.
(2) Determine the matrix B of T with respect to Ẽ and F̃.

(3) Determine the matrix of a base change from F to F̃, and confirm that B = Q−1AP .
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(ans) (1) By TE = FA, we have

TE = T
(
1 t t2 t3

)
=
(
T (1) T (t) T (t2) T (t3)

)
=
(
0 1 4t 12t2

)

= FA =
(
1 t t2

)




0 1 0 0
0 0 4 0

0 0 0 12



. ∴ A =





0 1 0 0
0 0 4 0

0 0 0 12



.

(20)

(2) By T Ẽ = F̃B, we have

T Ẽ = T
(
t2 + 1 t2 − 1 t3 + t t3 − t

)
=

(
T (t2 + 1) T (t2 − 1) T (t3 + t) T (t3 − t)

)
=
(
4t 4t 12t2 + 1 12t2 − 1

)

= F̃B =
(
t2 + 1 t2 − 1 t

)



0 0 x z
0 0 y w
4 4 0 0


.

∴ (x+ y)t2 + (x− y) = 12t2 + 1, (z + w)t2 + (z − w) = 12t2 − 1.

∴ x = 13
2 , y = 11

2 , z = 11
2 , w = 13

2 . ∴ B =




0 0 13
2

11
2

0 0 11
2

13
2

4 4 0 0


.

(21)

(3) By F̃ = FQ, we have

(
t2 + 1 t2 − 1 t

)
=
(
1 t t2

)



1 −1 0
0 0 1
1 1 0



.

∴ Q =




1 −1 0
0 0 1
1 1 0


.

(22)

To show B = Q−1AP , it suffices to show QB = AP .



1 −1 0
0 0 1
1 1 0






0 0 13
2

11
2

0 0 11
2

13
2

4 4 0 0


 =




0 0 1 −1
4 4 0 0
0 0 12 12




=




0 1 0 0
0 0 4 0
0 0 0 12













1 −1 0 0

0 0 1 −1

1 1 0 0
0 0 1 1









�

(23)
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11.3. Base changes. Here, we consider the relationship of the above mentioned ma-
trices A and B. Summarizing arguments so far, we have a commutative diagram
(mapping and its composition is determined irrespective of the route):

Kn B
−→ Km

↓ φ−1

Ẽ
↑ φ

F̃

V
T
−→ W

↓ φE ↑ φ−1
F

Kn A
−→ Km

(24)

If we want to have a mapping from upper left Kn to upper right Km, there are several
ways containing passing B way, and passing A way, and resulting mappings are the
same. Namely, two correspondence:

x̃
B
7−→ ỹ

x̃
P
7−→ x

A
7−→ y

Q−1

7−→ ỹ
(25)

are the same, and therefore
{

ỹ = Bx̃.
ỹ = Q−1y = Q−1Ax = Q−1AP x̃.

(26)

are the same linear mappings, say, B = Q−1AP .
If bases E,F of V,W , respectively, are changed to Ẽ, F̃, then the matrix A repre-

senting T is changed to the matrix Q−1AP . If W = V , then usually E = F, Ẽ = F̃ are
supposed, and therefore A is changed to P−1AP . This idea is applied to select a good
basis and to represent T by an easier matrix.

11.4. Images and kernels of linear mappings. If a linear mapping T is not rep-
resented by multiplying vectors by a matrix, then the above method to reduce T to
a matrix A. In particular, for the image ImT of T and the kernel KerT of T , to
determine bases of them, the following method is helpful.

(i) First, select bases E and F of V and W , respectively, and represent T by a
matrix A.

(ii) Determine a basis H = 〈h1, h2, . . . , hr〉 of the image of TA, and a basis H =
〈g1, g2, . . . , gs〉 of the kernel of TA.

(iii) H̃ = 〈Fh1,Fh2, . . . ,Fhr〉 is a basis of the image of T , and

G̃ = 〈Eh1,Eh2, . . . ,Ehs〉 is a basis of the kernel of T .

Proof. (1) By isomorphism φF, ImT is mapped to ImTA. It is clear by the diagram,
but dare to show below.

ImTA = TA(K
n) = (φF ◦ T ◦ φ

−1
E

)(Kn) = (φF ◦ T )(V ) = φF(T (V )) = φF(ImT ) (27)

Hence φF is an isomorphism from ImT to ImTA, and thus ImT ≃ ImTA. A basis
of ImT and a basis of ImTA are mapped to each other by φF, we can make a basis
〈Fh1,Fh = 2, . . . ,Fhr〉 of ImT by a basis 〈h1, h2, . . . , hr〉 of ImTA.
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(2) An isomorphism φE, Ker T is mapped to KerTA. Because letting x = Ex,

Tx = 0 ⇐⇒ TEx = 0 ⇐⇒ FAx = 0 ⇐⇒ Ax = 0 (28)

Hence corresponding x and x are simultaneously belongs to the kernel or not. Accord-
ingly, Ker T ≃ Ker TA, and from a basis 〈g1, g2, . . . , gs〉 of KerTA, we have a basis
〈Eg1,Eg2, . . . ,Egs〉 of Ker T . �

(exercise03) Let T be defined in (exercise02). (1) Determine a basis of the image of T .
(2) Determine a basis of the kernel of T .

(ans) (1) We determine a basis of the image of TA, by elementary column operations
on A transforming it into a stair-like form.



0 1 0 0
0 0 4 0
0 0 0 12



 −→




1 0 0 0
0 1 0 0
0 0 1 0



 . ∴ H = 〈




1
0
0



 ,




0
1
0



 ,




0
0
1



〉.

∴ H̃ = 〈F




1
0
0


 , F




0
1
0


 , F




0
0
1


〉 = 〈1, t, t2〉.

(29)
(2) To determine a basis of the kernel, we solve Ax = 0.

A =




0 1 0 0
0 0 4 0
0 0 0 12




x y z w

−→




1 0 0 0
0 4 0 0
0 0 12 0




y z w x

−→




1 0 0 0
0 1 0 0
0 0 1 0


 .

∴




y
z
w
x


 = α




0
0
0
1


. ∴




x
y
z
w


 = α




1
0
0
0


. ∴ G = 〈




1
0
0
0


〉.

∴ G̃ = 〈E




1
0
0
0


〉 = 〈1〉.

(30)
(exercise04) Let V be a complex vector space made of all 2 × 2 complex matrices.

S =

(
3 2i
2i 1

)
, and define a transformation T of V by TX = SX −XS. (1) Show

that T is a liner transformation of V .

(2) Taking a basis of V : E = 〈

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
〉 =

〈R1, R2, R3, R4〉, determine the matrix of T with respect to E. (3) Finding bases of
the image and the kernel of TA, determine bases of the image and the kernel of T .
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(ans) (1) For any X, Y ∈ V , and any c ∈ C, we have

T (X + Y ) = S(X + Y )− (X + Y )S = SX + SY −XS − Y S
= (SX −XS) + (SY − Y S) = TX + TY.

T (cX) = ScX − cXS = cSX − cXS = c(SX −XS) = cTX.
(31)

Hence T is a linear transformation of V . �

(2) For X =

(
x y
z w

)
,

TX =

(
3 2i
2i 1

)(
x y
z w

)
−

(
x y
z w

)(
3 2i
2i 1

)

=

(
−2iy + 2iz −2ix+ 2y + 2iw

2ix− 2z − 2iw 2iy − 2iz

)
.

(32)

Here, letting X = Ri,

∴ TE = T
(
R1 R2 R3 R4

)
=
(
TR1 TR2 TR3 TR4

)

=

( (
0 −2i
2i 0

) (
−2i 2
0 2i

) (
2i 0
−2 −2i

) (
0 2i
−2i 0

) )

= EA =
(
R1 R2 R3 R4

)








0 −2i 2i 0
−2i 2 0 2i

2i 0 −2 −2i

0 2i −2i 0









.

∴ A =









0 −2i 2i 0

−2i 2 0 2i
2i 0 −2 −2i

0 2i −2i 0









.

(33)

(3) To determine H, A is transformed by elementary column operation,








0 −2i 2i 0

−2i 2 0 2i
2i 0 −2 −2i

0 2i −2i 0









−→









2i −2i 0 0

0 2 −2i 2i
−2 0 2i −2i

−2i 2i 0 0









−→









2i −2i 0 0

0 2 −2i 0
−2 0 2i 0

−2i 2i 0 0









−→









2i 0 0 0
0 2 −2i 0

−2 −2 2i 0
−2i 0 0 0









−→









2i 0 0 0
0 2 0 0

−2 −2 0 0
−2i 0 0 0









.

∴ H = 〈









2i

0
−2

−2i









,









0

2
−2

0









〉.

∴ H̃ = 〈E









2i

0

−2
−2i









, E









0

2

−2
0









〉 = 〈

(
2i 0
−2 −2i

)
,

(
0 2
−2 0

)
〉.

(34)
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To determine G, we solve the equation Ax = 0.








0 −2i 2i 0
−2i 2 0 2i

2i 0 −2 −2i
0 2i −2i 0









−→









−2i 2 0 2i
0 −2i 2i 0

2i 0 −2 −2i
0 2i −2i 0









−→









1 i 0 −1
0 −2i 2i 0

2i 0 −2 −2i
0 2i −2i 0









−→









1 i 0 −1

0 −2i 2i 0
0 2 −2 0

0 2i −2i 0









−→









1 i 0 −1

0 1 −1 0
0 2 −2 0

0 2i −2i 0









−→









1 0 i −1

0 1 −1 0
0 0 0 0

0 0 0 0









.

∴ G = 〈









−i

1

1
0









,









1

0

0
1









〉.

∴ G̃ = 〈E









−i

1

1

0









, E









1
0

0

1









〉 = 〈

(
−i 1
1 0

)
,

(
1 0
0 1

)
〉.

(35)

11.5. Canonical forms of matrices. For a linear mapping T : V −→ W , by well
choosing bases of V and W , consider to simplify the matrix of T with respect to
those bases. Chapter 10, Theorem 12, composition of bases in the proof is adopted.
That is, take a basis 〈er+1, . . . , en〉 of KerT , which is extend this to a basis E =
〈e1, . . . , er, er+1, . . . , en〉 of V . Further, Tei = fi (i = 1, . . . , r), make a basis of ImT .
Finally, extending this basis to a basis of W . Then

TE =
(
Te1 . . . Ter Ter+1 . . . Ten

)

=
(
f1 . . . fr 0 . . . 0

)

=
(
f1 . . . fr fr+1 . . . fm

)( Er Or,n−r

Om−r,r Om−r,n−r

)
= FFmn(r).

(36)
Hence the matrix of T with respect to E and F is Fmn(r). Especially, if T = TA, a
bases are regarded as nonsingular matrices,

AP = QFmn(r). ∴ Q−1AP = Fmn(r). (37)

This corresponds to the fact that a matrix A is transformed into a canonical form by
elementary operations.

Next, consider that T is a linear transformation of V . In this case we choose the
same basis of domain and codomain, thus the result is not so simple as above. Detailed
contents shall be explained later, here we study basic principle. For T : V −→ V if a
subspace W of V satisfies that T (W ) ⊂ W , then W is said to be T -invariant subspace.
Take a basis of W is 〈e1, . . . , es〉, and extend it to a basis E = 〈e1, . . . , en〉 of V . Then
by

TE =
(
Te1 . . . Tes Tes+1 . . . Ten

)

=
(
e1 . . . es es+1 . . . en

)( Q11 Q12

On−s,s Q22

)
= EQ

, (38)

we have the matrix Q of T with respect to E.
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More strongly, if V is the direct sum of two T -invariant subspaces W1 and W2, say,

V = W1 ⊕W2, (39)

then arrange bases of those subspaces and make a basis E = 〈e1, es, es+1, . . . , en〉 of
V , we have

TE =
(
Te1 . . . Tes Tes+1 . . . Ten

)

=
(
e1 . . . es es+1 . . . en

)( Q11 Os,n−s

On−s,s Q22

)
= EQ.

(40)

This case Q is a block diagonal matrix. In general, if V is the direct sum of several
subspaces

V = W1 ⊕ · · · ⊕Ws, (41)

then arranged bases of W1, . . . ,Ws is a basis of V , and the matrix Q of T is the
following. 



Q1 O
Q2

. . .

O Qs


 (42)

In particular, if T = TA, then by the matrix P of arranged basis, we have

AP = PQ. ∴ P−1AP = Q. (43)

P is called a transformation matrix sending A to Q. Under a suitable condition,
we can make Q a diagonal matrix, then this linear transformation T is said to be
diagonalizable. (⇒ Chapter 12–13) However, a matrix is not always diagonalizable, if
it is impossible, it can be Jordan’s canonical form. (⇒ Chapter 14)

11.6. Operations of linear mappings and matrices. For linear transformations
of T and S of V , let A and B be matrices with respect to E, then

(T + S)E = TE+ SE = EA + EB = E(A+B)
(TS)E = T (SE) = T (EB) = (TE)B = (EA)B = E(AB)
(kT )E = k(TE) = k(EA) = E(kA)

(44)

Namely, if a basis in fixed, the operations such as the sum, composition, and scalar
multiplication are simply corresponds to matrix operations. Especially, a polynomial
of linear transformation T is (product is regarded as composition) Φ(T ), using (44)
repeatedly, we have

Φ(T )E = EΦ(A). (45)

This result is used for the proof of Hamilton Cayley, etc.


