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Abstract

This paper presents a shape-blending algorithm that interpolates between 2D and 3D polyhedrons. Shape blending,
which is sometimes called shape metamorphosis or geometric morphing, has applications in such areas as entertainment
and medical visualization. Our algorithm directly interpolates vertices of polyhedral source shapes by using variationally
optimized subdivision surfaces. To interpolate a pair of 3D polyhedrons, for example, a smooth 4D tetrahedral
interpolator subdivision surface is created. Intersecting the 4D subdivision surface with another 4D surface produces
a blended 3D mesh. Variational optimization of the interpolator surface ensures a smooth shape transition. At the same
time, manipulable nature of the interpolator subdivision surface allows for feature correspondences, shape transition
effects, and other controls over the shape blending. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The shape-blending problem can be stated as follows;
given two or more source shapes, construct a sequence of
interpolated shapes so that blended shapes adjacent to
each other in the sequence are geometrically close. Shape
blending is sometimes called shape metamorphosis, geo-
metric morphing, or shape interpolation. The technology
can be applied to create stunning visual effects in movies
and TV advertisements, for example.

Shape blending has been studied since around 1980s,
and many algorithms have been published. An excellent
review on 3D shape morphing by Lazarus and Verroust
[1] notes that there are two major classes of approaches
to 3D shape blending; the boundary-representation-based
approach and the volume-based approach.
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1. Boundary representation-based approach: This ap-
proach works in a parameter domain defined on the
surface of objects. Polygonal mesh representation has
been the boundary representation of choice for morph-
ing. Most of the algorithms in this class create a common
mesh, which is a common embedding of both of the
source meshes. The common mesh is then geometrically
deformed to produce morphed shapes. The common
mesh is found typically on a spherical or a rectangular
parametric domain.

The advantage of the boundary-representation-based
approach is its ability to control morphing. Feature cor-
respondence can be established, for example, through
vertex-to-vertex or mesh-to-mesh correspondence. A dis-
advantage of this approach is its difficulty in morphing
between shapes having different surface topology
(i.e., different genera and/or connectivity), for the ap-
proach requires strict correspondence between vertices
and edges of source shapes.

Kent et al. [2] employed spherical embedding, while
Kanaiet al. [3] employed embedding into a disk by using
harmonic mapping. For feature correspondence, Greg-
ory et al. [4] and Kanai et al. [5] employed coarse
meshes overlaid on the source meshes to let users specify
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mesh-to-mesh feature correspondence. Lee et al. [6]
introduced multiresolution reparameterization of poly-
gonal meshes to morphing. Their decomposition, an ap-
plication of MAPS mesh reparameterization algorithm
[7], is such that the feature lines and points specified in
their original (i.e., highest resolution) meshes are preser-
ved in the lowest resolution mesh. Consequently, feature
correspondences can be established in the simplest,
lowest resolution mesh.

As mentioned, this class of algorithm is not suited for
interpolating shapes having different topology. A paper
by DeCarlo and Gallier [8] is the only example we know
of in this class that explicitly dealt with interpolation of
shapes having different topologies.

2. Volume-based approach: This approach employs
level sets of distance functions computed from the source
shapes for morphing. These distance functions are inter-
polated to produce blended shapes.

A major advantage of this approach is its ability to
morph easily between shapes having different surface
topology. However, it lacks detailed control over morph-
ing available in the boundary-representation-based
approach. Establishing feature correspondence and con-
trolling shape transition are difficult. Another disadvan-
tage of this approach is loss of quality, e.g., loss of sharp
features, due to approximation of shapes using smooth
distance functions.

Many algorithms in this class employed voxel repres-
entation of shapes, which can be considered as a 0-level
set of a discretized distance function. Lerios et al. [9]
extended feature-based 2D image morphing by Beier and
Neely [10] to 3D. Hughes [11] brought the voxels into
the Fourier domain, and He et al. [12] into the wavelet-
transformed domain, for morphing. Some algorithms
employed signed distance functions in 3D to interpolate
a set of scattered points in 3D and a set of 2D contours to
construct 3D shapes [13,14]. Kaul and Rossginac [15]
used weighted Mincowski sum for morphing. They intro-
duced a concept of influence shape to control shape
transition, albeit indirectly. Payne and Toga [16] and
Cohen-Or et al. [17] also used signed distance function.
Whitaker and Breen [18] introduced the idea of evolu-
tion equations to morphing. Turk and O’Brien [19]
employed 4D variational implicit functions to smoothly
interpolate a pair of 3D distance functions computed
from 3D source shapes. The 4D interpolator is then
intersected with a plane to produce a 3D implicit func-
tion of the interpolated shape. Boundary (polyhedral)
representation of the interpolated shape is then recovered
by using an iso-surface extraction algorithm.

1.1. Our approach
This paper presents a new shape blending algorithm

for shapes defined as polyhedrons. The algorithm inter-
polates the polyhedrons, the “source” shapes, by using

a subdivision surface having a dimension one higher than
the source shapes. The subdivision surface is made to
smoothly interpolate vertices of the source shapes by
using variational optimization. Intersecting the inter-
polator subdivision surface with another surface pro-
duces a blended shape. Smooth shape transitions
are achieved due to the use of the variational optimiza-
tion. It should be noted that what is called a subdivision
surface here is different from a typical subdivision sur-
face. Of two components of a typical subdivision surface
scheme, geometric smoothing and connectivity refine-
ment, our method borrows the connectivity refinement
only. Our scheme generates vertex coordinates using
a combination of methods different from typical sub-
division surface schemes.

Thanks to the variationally optimized subdivision sur-
face used for the interpolation, the algorithm combines
some of the advantages of the several algorithms in both
of the two classes of approaches mentioned above. As in
the case of algorithms that employ variationally opti-
mized smooth implicit functions, our method is able to
produce smooth-shape transition. At the same time, sim-
ilar to some of the boundary-representation-based
methods, our method allows for various controls over the
interpolation. This controllability is due to manipulabil-
ity of the subdivision surfaces employed for the shape
interpolation. For example, feature correspondences
among vertices of source meshes can be established by
using curved line geometric constraints. Our interpola-
tion method also allows for other shape transition effects,
such as spatially non-uniform shape transition and tran-
siently exaggerated shapes. An additional advantage of
our algorithm is its potential to blend source shapes
having different surface topology. This is mainly due to
the use of the interpolator surface whose dimension is
one higher than that of the source shapes. While our
current implementation limits such topology transcen-
ding shape blending be applicable only to 2D contours,
future extensions should enable blending of 3D source
shapes having different surface topology.

The following list summarizes important features of
our approach:

(1) Feature correspondence: Direct point-to-point corre-
spondence can be established between the source
meshes by using constraints.

(2) Smooth blending: Shape transitions as well as blended
shapes are smooth since source shapes are interpo-
lated by using a smooth, variationally optimized sub-
division surface.

(3) Sharp source features: Sharp as well as smooth shape
features can be represented in the source shapes.

(4) Shape transition control: Various shape transition ef-
fects can be incorporated. For example, spatially
non-uniform shape transitions and exaggerated
blended shapes can be achieved.
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The rest of this paper is structured as follows. The
shape blending algorithm is described in Section 2. While
our emphasis in this paper is on the 3D shape blending
algorithm, we also describe the 2D shape blending algo-
rithm for it helps us to illustrate our approach. Section 2
also includes some of the results generated by our shape-
blending algorithms. Additional results are presented in
Section 3. We conclude the paper in Section 4 with the
summary and future work.

2. The shape-blending algorithm

Our shape-blending algorithm interpolates source
shapes defined as n-dimensional polyhedrons by using an
(n + 1)-dimensional subdivision surface [20-25] as an
interpolator. The subdivision surface is globally opti-
mized using a variational method so that it is smooth. If
more than one source shape is given, our algorithm could
interpolate them using a globally smooth subdivision
surface. The smoothing subdivision rule of the subdivi-
sion surfaces may be modified, if necessary, to create
sharp shape features in the source and blended shapes.

In the following of this paper, we call an n-dimensional
source mesh S-mesh and an (n + 1)-dimensional interpo-
lator mesh I-mesh. We call the axis of interpolation
blending axis, denoted by t, although it has little to do
with time. The spatial axes in 2D are denoted by x and y,
and, those in 3D are denoted by x, y, and z.

2.1. 2D shape-blending algorithm

Assume that each source mesh (S-mesh) is a 2D poly-
gonal contour defined on the x-y plane. Multiple S-
meshes are located at different values of the blending axis
t. An interpolator mesh (I-mesh) that interpolates S-
meshes is a 3D triangular mesh. Blending of 2D shapes is
achieved by following the steps:

1. Initial meshing: Given S-meshes, each of which is de-
fined as a 2D polygonal contour, the algorithm
creates an initial 3D triangular I-mesh by connecting
vertices of an adjacent pair of S-meshes on the blend-
ing axis t.

2. I-mesh subdivision: The initial triangular I-mesh is
subdivided by applying a 1-to-4 subdivision rule, that
is topologically identical to Loop’s scheme [22]. The
subdivision gives the I-mesh topological complexity
enough for smooth interpolation of complex shapes.

3. Variational optimization: The subdivided triangular
I-mesh is variationally optimized so that the I-mesh
satisfies a given set of geometric constraints. Con-
straints usually include surface smoothness and
end-point (that is, S-mesh) interpolation. In addition,
vertex-to-vertex feature correspondence and other

controls over the blending may also be given as
geometric constraints to the optimization.

4. Shape extraction: The 3D I-mesh is intersected with
a 3D surface to extract an interpolated (or a blended)
2D contour. The surface may be a plane at t = const.,
or a curved surface defined as a function of x, y, and t.

When blending a pair of 2D polygonal contours, the
initial mesh can be created automatically using a method
described by Shinagawa et al. [26]. Given a pair of
polygonal contours, the method finds pairs of closest
vertices from the contours.

Fig. 1 shows an example of 2D shape blending.
Fig. 1(a) shows a pair of source contours to be interpo-
lated, outlines of letters “7” and “8”, with a topological
key-shape in the middle. Fig. 1(b) is the initial interpola-
ting triangular mesh that connects two 2D polygonal
contours. Fig. 1(c) is the interpolating subdivision surface
produced as a result of variational optimization. Inter-
secting this smoothed mesh with a t = const. surface will
produces a blended shape shown in Fig. 1(d).

The topological key-shape, an additional outline in-
serted in the middle of the blending axis, guides topologi-
cal evolution of shapes between initial contours having
different topology. A topological key-shape is inserted at
each topological juncture in order to uniquely guide
topological evolution of shapes. In the example of Fig. 1,
the letter “8” has two interior loops while the letter “7”
has none. The key-shape in this example guides the
topological evolution by relating the A1 with B1, A2 with
B2, A3 with B3, and B3 with C3. Without the guidance,
there are many equally feasible topological configura-
tions of the I-mesh.

Note that the key-shape is to guide topology only; its
geometry (vertex coordinate) can be arbitrary. (It is true,
however, that a reasonable key-shape geometry leads to
a faster computation of the I-mesh.) Note also that the
vertex topology of the source shapes and the key-shape
need not correspond exactly. The differences in vertex
topology are taken care of by the I-mesh connectivity
subdivision, which increases degrees-of-freedom of the
I-mesh.

2.2. 3D shape-blending algorithm

In the case of 3D shape-blending, each source shape
(S-mesh) is a 3D polyhedral mesh. The S-meshes are
interpolated by an I-mesh, which is a 4D tetrahedral
mesh. While basic steps are similar, the 3D shape-blend-
ing algorithm is significantly more involved than its 2D
counterpart. Much of the additional difficulty lies in the
initial meshing stage. Unlike a 3D triangular mesh con-
necting 2D polygonal contours, it is not straightforward
to create a tetrahedral mesh connecting a set of arbitrary
polygonal meshes. Our approach to this difficulty of
initial meshing is to “start simple and refine later”.
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(a) Initial source contours (both sides) and a topological key-shape (in the middle).

(b) Initial triangular I-mesh.
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(d) Shape blending sequence generated.

Fig. 1. Blending 2D contours of the letters “8” and “7” (d). Source contours in (a) are connected to create the initial I-mesh (b), which is
subdivided and smoothed (c). The middle contour in (a), the topological key-shape, is inserted to guide the topological evolution of the

I-mesh from “8” to “7”.

The tetrahedral mesh creation is relatively easy if the
source meshes are simple enough. As an extreme
example, a tetrahedral mesh between a pair of tetrahedra
can be found quite easily. Our algorithm first simplifies
the S-meshes using wavelet analysis. Prior to the wavelet
analysis, source meshes are reparameterized, if necessary,
so that the resulting mesh has 1-to-4 subdivision connect-
ivity required for the wavelet analysis. The S-mesh repar-
ameterized to have 1-to-4 subdivision connectivity is
called a TS-mesh. Then, for each source mesh, the lowest
resolution source mesh produced by the wavelet analysis
is used to create a base or level-0 tetrahedral I-mesh. An
algorithm to create the base tetrahedral mesh will be
explained in the next section.

The base tetrahedral I-mesh is topologically and geo-
metrically refined into a fully featured tetrahedral I-mesh.

This recursive refinement of vertex connectivity employs
a 1-to-4 subdivision rule for the triangular S-meshes and
a 1-to-8 subdivision rule for the tetrahedral I-mesh. The
1-to-4 subdivision rule of our algorithm employed is
topologically identical to Loop’s scheme [22] for tri-
angular meshes (Fig. 6). The 1-to-8 subdivision rule for
tetrahedral meshes is the “symmetric subdivision” rule of
Moore [27] illustrated in Fig. 7. At each subdivision step,
detail coefficients from the wavelet analysis are used to
provide geometric refinement.

A full-resolution initial I-mesh is created when the
wavelet analysis performed on the source TS-meshes is
fully reversed through the refinement. The refinement
process using the wavelet coefficients reverts the source
meshes to their original connectivities and geometries.
The coordinates of vertices inserted to create the level-n
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I-mesh are computed recursively from those of the level-

(n — 1) I-mesh by using linear interpolation. Note that

these coordinate values are initial values to be modified

by the succeeding variational optimization step. The co-
ordinates of vertices in the S-meshes are to remain un-
changed.

When the initial meshing is complete, subdivision of
the I-mesh and variational optimization follows. Blended
shape is extracted by intersecting the variationally opti-
mized I-mesh with another surface.

Blending of 3D S-meshes is accomplished by following
the steps below (see Fig. 2):

1. Initial meshing: Create an initial 4D tetrahedral I-mesh
from a given set of 3D polyhedral S-meshes. This is
accomplished by (i) simplifying the S-meshes, (ii) start-
ing a base tetrahedral I-mesh from the simplified S-
meshes, and (iii) systematically growing a complex
I-mesh out of the base I-mesh.

(A) Multiresolution analysis (MRA): Each S-mesh is

wavelet analyzed to create a multiresolution
(MR) representation of the S-mesh using the
framework of Lounsbery et al. [28]. For each of
the S-meshes, the analysis produces a base mesh
and multiple levels of detail coefficients. Since the
wavelet analysis assumes a triangular mesh with
1-to-4 subdivision connectivity as its input, the
S-mesh may require reparameterization. To repar-
ameterize, we employ multiresolution adaptive
parameterization of surfaces (MAPS) algorithms by
Lee et al. [7]. The S-mesh reparameterized to have
1-to-4 subdivision connectivity is called a TS-
mesh.

(B) Base I-mesh creation: For each of the TS-meshes,
the lowest resolution (i.e., the simplest) TS-mesh
produced by the MR analysis above is used to
create a base tetrahedral I-mesh that interpolates
TS-meshes. The base tetrahedral I-mesh is created
by connecting vertices of a pair of the lowest-
resolution TS-meshes. (Details of the base tet-
rahedral I-mesh creation will be explained in
Section 2.2.1)

(C) I-mesh refinement: The base TS-meshes are recur-
sively refined, both topologically and geomet-
rically, by using multiple levels of detail coefficients
produced by the MRA in the step 1(A) above. As
the polygonal TS-meshes are refined, the tetrahed-
ral I-mesh is also refined accordingly. The 1-to-4
subdivision connectivity of the TS-meshes enables
systematic topological refinement of the tetrahed-
ral I-mesh while maintaining the I-mesh’s 1-to-8
subdivision connectivity by using the Moore’s sub-
division rule.

2. I-mesh subdivision: If necessary, both I-mesh and TS-
meshes are subdivided to increase their topological
complexity. Increased topological complexity gives the
meshes increased degrees-of-freedom necessary to
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Fig. 2. The process flow of the 3D shape-blending algorithm by
using subdivision surfaces. The figure is illustrated for the case of
mesh refinement level of 2.

smoothly approximate complex shapes that could oc-
cur in the tetrahedral I-mesh.

3. Variational optimization: Refined and subdivided tet-
rahedral I-mesh is variationally optimized so that it
satisfies various geometric constraints. Constraints
typically include smoothness and end-point (ie.,
source shape) interpolation. In addition, constraints
used for various shape-blending effects may be in-
cluded in the optimization. These shape-blending ef-
fects, including feature correspondence and spatially
non-uniform shape transition, are among the major
advantages of the method proposed in this paper.
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Fig. 3. The base I-mesh (a) created from the MR TS-meshes of the rounded star and the mannequin head models. The TS-meshes and

the I-mesh are refined together by one level (b) and three levels (c).
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Fig. 4. Relationships between M, M,, G, and G,. A graph G; is defined as the dual of a source mesh M, and a graph G, is defined as

a subgraph of a target mesh M, so that G, is isomorphic to G;.

4. Shape extraction: The I-mesh is intersected with a sur-
face to extract an interpolated shape. The surface may
be a t = const. plane, or a curved surface defined as
a function of x, y,z, and t.

The variational optimization step, whose details will
be explained in Section 2.3, employs a framework similar
to wavelet-based multiresolution analysis and synthesis
in order to optimize for different sets of geometric con-
straints at multiple resolution levels. Note that the multi-
resolution framework for the variational optimization of
I-meshes is different from the one used for reparameteriz-
ing S-meshes.

Fig. 3 shows an example of I-mesh creation. Fig. 3(a) is
the base I-mesh, created by tetrahedral-meshing a pair of
level-0 TS-meshes. The level-0 TS-mesh of the star shape
(an icosahedron) contains 12 vertices (20 triangular-faces,
30 edges), while the base mesh for the mannequin head
contains 10 vertices (16 triangular-faces, 24 edges). A re-
finement step produces the I-mesh at the resolution level
1 shown in Fig. 3(b), and three refinement steps create the
I-mesh at resolution level 3 shown in Fig. 3(c).

Note in Fig. 3 to visualize a 4D tetrahedral mesh in 2D
projections, one of the spatial axes x and the blending

axis t are overlaid. Similar overlaying of coordinate axes
will be employed throughout this paper to visualize 4D
meshes in 2D projections.

2.2.1. Creating base tetrahedral mesh

The base tetrahedral I-mesh is created from a pair of
the lowest resolution TS-meshes by using the algorithm
below. Let the two triangular S-meshes be M and M,. If
we assume that a graph G, (a dual of the mesh M,) and
a graph G, (isomorphic to G,) can be embedded in the
meshes M and M|, respectively, then M, and G, can be
meshed together by a set of tetrahedra. Fig. 4 illustrates
the relationships between M, M,, G, and G,.

1. Compute a graph G, which is a dual of the mesh M.
(A face in M becomes a vertex in G, and vice versa.)

2. Establish a one-to-one mapping between vertices in

G, and a subset of vertices in M;. Define a graph

G, having as its vertices the vertices of M, in the above

subset.

Add edges to G, so that G, is isomorphic to G;.

4. Establish a correspondence between an edge in G, and
a path in M, (that is, an edge in G,), so that G; is
isomorphic to G,. Here a path refers to a series of

bl
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Fig. 5. Three cases in which a tetrahedron is created between a pair of graphs.

connected edges. Note that either one of the two paths
does not share any vertex in M, except at the ends.
5. Create a tetrahedron by applying either one of the

three rules below (see Fig 5):

(a) Generate a tetrahedron from a vertex in M, and
a face in M, (Fig 5(a)).

(b) Generate a tetrahedron from an edge in M, and an
edge in M, (Fig 5(b)).

(c) Generate a tetrahedron from a face in M, and
a vertex in M, (Fig. 5(c)).

In Step 2 above, if the number of vertices in G, (that is,
the number of faces in M) is larger than the one in M,,
we pick two adjacent faces in M, and group them into
one so that the number of vertices in G, is identical to
(or less than) M,. The pair of faces to be grouped together
is picked by their geometrical proximity, e.g., closeness of
their centroids.

The same procedure can also be applied when we fail
in Step 4 above. If we cannot find the correspondences
between an edge in G, and a path of M,, we reduce
the number of vertices in Gy by one and go back to the
Step 1 again.

This algorithm always succeeds in establishing tet-
rahedral meshes. For example, if both of the two source
meshes are topologically identical to spheres, the algo-
rithm will terminate as the number of vertices in G, (and
hence G,) goes down to 4. This is because, in such a case,
the graph having only four vertices becomes a tetrahed-
ron, and we can definitely embed a tetrahedron in a mesh
topologically equivalent to a sphere. Actually, the algo-
rithm finds tetrahedral meshes by merging at most a few
faces. The same argument holds when the source meshes
are of arbitrary topological type.

When wavelet-analyzing a pair of TS-meshes to create
a pair of simplified TS-meshes, we reduce their vertex
counts down to about 10-20. Meshes of this size are
simple enough for the base tetrahedral I-mesh creation
algorithm described above to terminate quickly on all the
examples we tried.

2.3. Variational optimization

The variational optimization step of our algorithm
employs a minor variation of Takahashi’s subdivision
surfaces with multiresolution constraints [29]. Com-
pared to Gortler’s [24] and Zorin’s [25] method,
Takahashi’s subdivision surface is different, in that it
allows an independent sets of geometric constraints to be
attached at each of the multiple resolution levels. This
feature allows us to specify a complex shape with a small-
er number of constraints than are necessary with the
other methods.

The variational optimization algorithms for the 3D
triangular I-mesh and 4D tetrahedral I-mesh are almost
identical. The most significant differences are the dimen-
sion of coordinates and the vertex topology of the meshes
to be optimized. The following description employs ter-
minology for the case of a 3D triangular I-mesh interpo-
lating 2D polygonal contours. However, by replacing
terms “mesh”, “surface” and “polyhedron” with “tet-
rahedral mesh”, “tetrahedral volume”, and “4D polyhed-
ron”, respectively, the description can be understood as
the variational optimization algorithm for a 4D tetrahed-
ral subdivision surface.

2.3.1. Subdivision surface

A subdivision surface is obtained by recursively refin-
ing the original control polyhedron ®© so that the
sequence of refined polyhedra ®), ®®), ... converges to
the limit surface ®). Lounsbery et al. [28] treated
refinement levels of subdivision surfaces as the resolution
levels in a wavelet-based framework of multiresolution
analysis. In this context, the superscript (k) denotes the
resolution level in the multiresolution analysis.

Let the number of vertices in the subdivision surface
O® be m®, By using the vectors of basis functions
oW (= 1,2,...,m") and coefficients c® (x = 1,2,...,m")
corresponding to @, the shape of the subdivision sur-
face ®* can be written as a vector inner product
CH =M c® = (P, ..., @ T-(¢P, ..., "), where
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CH(x)(e V™). In fact ®® belongs to a function space
V® of dimension m®. Here, the ith element of ¢ repres-
ents some coordinate (either x, y, or z, if it is of 3D) of the
ith vertex of ®®. This set of basis functions @, ..., o
is called scaling functions at resolution level k.

Consider now a function space W® defined as a differ-
ence of two function spaces spanned by the sets of bases
@**V and ¢®. The space W® is spanned by the vector
of basis functions ¥ and has the dimension
n® = m** Y _ m® By using a vector of coefficients cor-
responding to YP(x) (x =1,2,...,m"%), the difference
space can be written as D®(x) = @® -d®, where
D®eW®, This set of basis functions Yy, ..., y%) is
called wavelets at the resolution level k.

In the wavelet analysis framework, the difference
D®(x) adds “details” to C*¥(x) to synthesize (or, recon-
struct) a detail mesh ®** 1, Wavelet synthesis can be
written as

¢kt D = pheh 4 Qrg® 1)

by using matrices P® and Q®). Here, the pair of matrices
P® and Q® is defined as

V(9" = ¢ V(9 PY @
and
0" = 9%+ V)" QY. G

These matrices are called synthesis filters.

In a typical subdivision surface framework, a coarser
mesh ®® is topologically and geometrically refined to
generate a finer mesh ®%* 1 without using the detail
coefficients d®. The coordinate of each vertex after the
topological refinement is computed by using a weighted
sum of vertices around the vertex in question. Thus, the
formula (1) above is simplified to

clet D) — plogto. @)

Here the synthesis filter P® is an m®*1 xm®, and it
determines the coordinates of the refined mesh @** 1.
To construct a subdivision surface in 3D, we employ
a triangular subdivision rule topologically identical to
Loop’s rule [22] (Fig. 6). Our scheme differs from

Fig. 6. The 1-to-4 subdivision rules for triangular meshes.

Fig. 7. The 1-to-8 “symmetrical” subdivision rules for tetra-
hedral meshes.

Loop’s method in that we compute @**1 from @®,
plus a set of constraints at resolution level (k + 1) by
using the local filtering method of Taubin et al. [30]. The
vector of detail coefficients d® is then obtained to satisfy
formula (4) given the meshes ®@%**Y and ®®, To con-
struct a subdivision “surface” in 4D, that is, a “surface”
consisting of tetrahedra, we employ a symmetric subdivi-
sion rule for a tetrahedron described by Moore [27]
(Fig. 7).

2.3.2. Geometric constraints

To find subdivision surfaces that interpolate triangular
source meshes (T'S-meshes), the algorithm treats vertices
of the shapes as geometric constraints to be interpolated.
As explained, the interpolation algorithm first creates
a coarse initial interpolator mesh (I-mesh) by connecting
vertices of TS-meshes. Then, the initial interpolator mesh
(I-mesh) is subdivided and variationally optimized to
produce a smooth I-mesh.

We employ both finite-dimensional constraints and
transfinite-dimensional constraints, as defined by Welch
et al. [31], for the interpolation. The former refers to
constraints defined on a discrete parametric domain,
such as points, and the latter refers to constraints defined
on a continuous parametric domain, such as lines and
curves.

In the shape-blending algorithm, a finite-dimensional
constraint is added to each vertex of S-mesh in order to
make I-mesh interpolate the vertex. Finite-dimensional
constraints can also be used to create various transitional
effects, e.g., by pulling/pushing the surface by the con-
straints. Our algorithm [29] allows different sets of con-
straints to be added at each of the multiple resolution
levels. This gives us control over the shape of interpola-
ting subdivision surfaces that is more powerful than that
are possible with either Gortler’s [24] or Zorin’s [25]
methods.
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A finite-dimensional constraint that makes a surface
®® interpolate a point constraint 0, at a parameter
value X, can be written as

O%(xo) = 9¥(xo)" ¢ = 0. 5)

To specify vertex-to-vertex correspondence, the algo-
rithm connects a pair of vertices, one each from each of
the adjacent (in blending axis) TS-meshes, using a trans-
finite-dimensional constraint such as a straight or a
curved line. By specifying a path in 4D space the corre-
spondence curve should follow, we could incorporate
various shape transition effects.

The algorithm minimizes the least-mean-square error
of an integral to approximately satisfy the transfinite-
dimensional constraints [31]. Consider a coordinate of
a transfinite-dimensional constraint L(t) = L(l(t)) im-
posed on ®®(x), where ®*(x) denotes a coordinate of
the subdivision surface ®* of the parameter x, and
x = I(t) is the corresponding parametric path. To para-
meterize the subdivision surface, we employed a barycen-
tric coordinate system. (Refer [22] for the barycentric
coordinates.) The integral of the squared difference be-
tween the surface and the curve constraint is

(©®(I()) — L(¢))* dt. (6)
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(b) I-mesh with line
constraints

(d) The blending sequence without feature correspondence.

To minimize this integral, we solve the following
equation;

oW oW Je® = | L-@Pl)dr. ()

1 1
Both finite- and transfinite-dimensional in the end result
in a system of linear equations with respect to ¢® is as

M®Be®) — p®) (8)

The number of linear constraints in this case is equivalent
to the number of vertices contained in the faces where the
transfinite-dimensional constraints traverse.

In our shape-blending scheme, both finite- and trans-
finite-dimensional constraints can be imposed on the
I-mesh at multiple resolution levels simultaneously. We
call such constraints as multiresolution constraints, which
allow us to manipulate shape of an I-mesh effectively.
Constraints added at a low resolution level would have
global effects on I-mesh shape, while those added at
a high resolution level would have localized effects. By
imposing constraints simultaneously at multiple resolu-
tion levels, we could effectively manipulate shapes of
I-meshes. Figs. 12 and 13 show examples of manipulated
I-meshes and shape-blending effects produced by the
mesh by imposing constraints at different resolution
levels. In the example, constraints controls blending of

(¢) I-mesh after solving for the
constraints,

yVev
LA 4

(e) The blending sequence with feature correspondence.

Fig. 8. Line constraints can be used to establish feature correspondence required for effective shape blending.
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(a) The geodesic and the constraint
shown without the I-mesh.

shown with the I-mesh.

(c) After solving for the
constraint.

Fig. 9. A feature correspondence is created as a line geometric constraint, which is shown as a thick black line in (a) (without I-mesh) and
(b) (with I-mesh). Geodesic on the I-mesh (shown as a gray line with dots in (a) and (b)) connecting the feature vertices are pulled out

along with the I-mesh nearby to satisfy the constraint in (c).

the letter “2” with the letter “3”. Refer Section 2.4.3 for
the explanation on the figure. Details of the algorithm for
solving the multiresolution constraints via local smooth-
ing, which was originally proposed in [29], will be pre-
sented in Appendix A.

2.4. Controlling shape interpolation

This section describes mechanisms available in our
algorithm to impose various controls over shape
blending.

2.4.1. Feature correspondence

Feature correspondences are established by imposing
transfinite-dimensional constraints on I-meshes. Fig.
8 shows an example of feature correspondence. Fig. 8(a)
shows I-mesh without feature correspondence. Blending
sequence resulted from this I-mesh is shown in Fig. 8(d).
In Fig. 8(b), a pair of vertex-to-vertex feature correspond-
ences are established by imposing a pair of straight-line
transfinite-dimensional constraints on the I-mesh. The
constraints connect two points of the star with a point of
the triangle. (While not visible, there is another straight-
line constraint connecting the top vertex of the star with
a middle point of the upper edge of the triangle.) Solving
for the constraints produced an I-mesh shown in Fig. 8(c)
and the blending sequence shown in Fig. §(e).

An example of feature correspondence in 3D shape
blending is shown in Fig. 9. A tip of the horn of the star
shape is related by a curved line transfinite-dimensional
constraint (shown as a thick blue line) to the tip of the
nose of the mannequin head model. Fig. 9(a) shows the
geodesic (shown as a green line with dots) and the curved
line constraint without the tetrahedral I-mesh, while
Fig. 9(b) includes the I-mesh. The constraint solver tries

to match the geodesic on the surface of the I-mesh (shown
as a green line with dots) with the curved line constraint,
producing a deformed I-mesh shown in Fig. 9(c). Note
that the geodesic, consisting of a sequence of edges of the
I-mesh is an approximation of a real geodesic. The
geodesic on the I-mesh is created automatically by select-
ing a pair of vertices to be related, for manually specifying
a sequence of edges on a 4D I-mesh is not practical.

The blending sequence of Fig. 10(a) is created without
the feature correspondence, while that of Fig. 10(b) is
generated by using the feature correspondence based on
the line constraint described above. The effect of feature
correspondence between the horn of a star and the nose
of the mannequin, with some exaggeration, is noticeable
in Fig. 10(b).

2.4.2. Source sharpness control

Certain shape interpolation requires that the sharp
features of the source shapes to be preserved exactly,
while shape transition be smooth and continuous. We
realize such an effect by using special subdivision rules
and transfinite-dimensional constraints. To control the
sharpness of sources shapes, we attach a flag to each
vertex indicating either the vertex to remain sharp or be
smoothed. Our algorithm applies different subdivision
rules at the vertex depending on the flag.

Fig. 11 demonstrates this source sharpness control
feature of our algorithm. Source contours shown in Fig.
11(a) are used to create an initial I-mesh in Fig. 11(b). In
the source meshes, vertices marked with solid rectangles
are to remain sharp. The initial I-mesh is subdivided and
smoothed to produce the I-mesh shown in Figs. 11(c) and
(d). While the image in Fig. 11(c) employed hidden-
surface mesh rendering, that of Fig. 11(d) employed
Gouraud-shaded semi-opaque surface rendering. Note



R. Ohbuchi et al. | Computers & Graphics 25 (2001) 41-58 51

GGQe8H

(a) Blending shapes without constraint.

eIy

(b) Blending shapes with correspondence that related the tip of the nose with the tips of the rounded star.

Fig. 10. Shape blending with (a) and without (b) feature correspondence, generated from the I-mesh shown in Fig. 9. In (b), a tip of
a point of the star shape and the nose of the mannequin’s head are related by using a geometric constraint.
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Fig. 11. An example of sharpness control. Source contours (a) and initial I-mesh (b) is subdivided and selectively smoothed (c). The I-
mesh after smoothing is shown using two rendering methods to depict its shape.
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that, among the S-meshes, vertices of the star shape
were not rounded while a subset of the vertices of
the fan-like shape are smoothed, depending on the
smoothing control flags attached. This kind of sharp
features in a source shape are not easy to achieve if
smooth and implicit-function is used to represent the
source shapes.

2.4.3. Enhanced shape transition

Deformation of the I-mesh surface by using multi-
resolution constraints enables us to create interesting
“enhanced” transitional shapes in shape-blending se-
quences. Both point and line geometric constraints can
be used for such enhancements of shape transitions. For
example, adding line constraints, the same approach as
the one used for feature correspondence described in
Section 2.4.1, can creates enhanced transitions between
features of source shapes. Since constraints are of multi-
resolution nature, the locality of influence of a constraint
can be selected by picking a mesh resolution level at
which the constraint is applied.

Images in Figs. 12 and 13 compares, in 2D shape
blending, exaggerated shape transitions effects generated
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by applying constraints at different resolution levels.
Figs. 12(a)-(c) are smoothed I-meshes at the resolution
levels 1, 2, and 3, respectively. Notice dots in each of the
figure, which are the point geometric constraints added
to deform the I-mesh for the exaggerated shape transition
effects. Figs. 12(a)—(c) show constraints with their respect-
ive I-meshes at the resolution level which the constraints
are applied. After solving for the constraints, I-meshes of
Figs. 12(d)-(f) have resulted, which correspond, respec-
tively, to Figs. 12(a)-(c). Deformations are global
(Fig. 12(d)) if the constraints are added at a low resolu-
tion level (Fig. 12(a)). On the other hand, deformations
are local (Fig. 12(f)) if the constraints are added at a high-
resolution level (Fig. 12(c)).

Figs. 13(a)-(d) compares the blending sequence pro-
duced by the enhanced meshes. Fig. 13(a) is the base case
without any enhancement. In the “enhanced” transition
sequences of Figs. 13(b)-(d), the middle horizontal “bar”
of the letter “3” protrudes excessively during the
transition. Applying constraints at the [-mesh resolution
levels of 1, 2, and 3 produced, respectively, different
versions of the enhanced shape transition sequences
shown in Figs. 13(b)-(d).
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added at level 1.
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(e) After solving for the constraints
added at level 2.
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(f) After solving for the constraints
added at level 3.

Fig. 12. Multiresolution constraints creates varying surface deformation for a transition effects in shape blending. Constraints attached
at level 1 (a), level 2 (b), and level 3 (c) produced deformed meshes of (d), (e), and (f), respectively.
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(a) Without the transition effect.

(b) Shape transition effect produced by constraints added at level 1.

(¢) Shape transition effect produced by constraints added at level 2.

—_—

(d) Shape transition effect produced by constraints added at level 3.

Fig. 13. Enhanced shape transitions sequences are created by the mesh deformations at level 1 (b), level 2 (c), and level 3 (d). The “nose” is
pulled out from the letter 2 before it changes into the letter 3. For comparison, the first sequence (a) has no such enhancement.

Enhanced shape transition can also be created for
3D shape transitions by using constraints. The I-mesh
manipulation shown in Fig. 9 created the enhanced
blending sequence of Fig. 10(b). The blending
sequence without enhancement is shown in Fig. 10(a)
for comparison. This effect is realized by specifying
an arced line as a geometric constraint for feature corre-
spondence.

2.4.4. Spatially non-uniform shape transition

A spatially non-uniform progress of the blending cre-
ates an interesting effect. For example, in Fig. 14(d), by
effectively increasing the rate of shape transition at the
top, the letter “3” appears to blend into the letter “1”
from top to bottom.

We achieve such non-uniform transition effect by
warping an I-mesh by using spline functions before the
I-mesh is intersected with another surface to extract
a blended shape. We first compute a tight bounding box
of the I-mesh and normalize its coordinates. We then
employ a warp function to transform the normalized
coordinate values of the surfaces. In the case of 2D shape

blending, we first specify a cubic tensor-product Bézier
patch

3
P(x,p,t) = Y, Bi(x)B;j(y)Py(1), ©
i,j=0

where B;(x) (i=0,...,3) represents a Bernstein poly-
nomial and ¢ the blending axis. Each value of the sixteen
control points P;;(t) (i,j = 0, ..., 3) for (9) is a function of
t, which is calculated by specifying four values of P;;(t) at
0,431, and interpolating them with cardinal splines.
Thus, the resulting function (9) is smooth and end-point
interpolating. The function transforms the normalized
coordinates of the vertices of the I-mesh into a warped
surface, which is the I-mesh with spatially non-uniform
progress of blending.

In the case of 3D shape blending, its I-mesh warping
function is similar to that of 2D shape blending explained
above except for its dimension. Intersecting the warped
I-mesh surfaces with a sequence of planes perpendicular
to the axis t at t = const. produces a blended shape
sequence with spatially non-uniform progress of
blending.
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(a) Before warping I-mesh. (b) After warping I-mesh.

333111

(¢) Spatially uniform (original) shape-blending sequence.

333431

(d) Spatially non-uniform shape-blending sequence.

Fig. 14. Spatially non-uniform transition (d) is realized by warping the I-mesh.

VOO

(a) Blending the mannequin head model with the tiger head model.
-
L/

(b) Blending an octahedron with the mannequin head model. Sharp features, that are, vertices and edges,
of the source shape are preserved.

Fig. 15. 3D shape blending sequences created by using our algorithm.
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Fig. 14 shows, for 2D shape blending, an example of
spatially non-uniform progress of shape blending. Figs.
14(a) and (b) show the I-meshes before and after the warp.
The resulting spatially non-uniform blending sequence is
shown in Fig. 14(d), in which the letter “3” morphs into
the letter “1” from top to bottom while the uniform
blending sequence is shown in Fig. 14(c).

3. Results

This section presents some of the 3D shape blending
results created by using our shape-blending method.

Fig. 15(a) shows an example of blending the manne-
quin head with the tiger head. This example tries to
preserve sharpness in the source models. Both of the
source shapes shown in the figure are already repar-
ameterized so that they have 1-to-4 subdivision connect-
ivity. Source and blended meshes in this figure are at
resolution level 4, that is, the base source mesh is refined
4 times by using the 1-to-4 subdivision rule. For example,
the mannequin head at resolution level O consisted of 22
triangles, and its level 4 mesh consisted of 5632 triangles.
Using our prototype implementation, computing a
blended shape in this example took about 5min on a PC

Fig. 16. Feature correspondence between ears and noses in the source meshes shown in (a), (b), and (c) created a shape blending sequence
shown in (d), in which the ears and the nose of the mannequin and the tiger figures are related.

€000

(a) Only one of the ears of the mannequin is related to its counterpart in the tiger model by using linear
geometric constraint for feature correspondence.

ESv

(b) Spatially non-uniform transition that propagates from top to bottom.

Fig. 17. Examples of feature correspondence and spatially non-uniform shape transition.
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(Intel Pentium III CPU running at 700 MHz, with
256 MB memory). This time includes all the necessary
steps for the shape blending, including reparameteriz-
ation, initial meshing, variational optimization, and
shape extraction. Fig. 15(b) is another example that
blended an octahedron with sharp edges and points with
the mannequin head model.

An example of shape blending with feature corre-
spondence is shown in Fig. 16. In this example, the ears
and nose of the source meshes are related by vertex-to-
vertex curve geometric constraints. Figs. 16(a) and (b)
show the source shapes with constraints relating ears and
noses. In Fig. 16(c), the I-mesh was deformed to satisfy
given geometric constraints. Fig. 16(d) shows the shape
blending sequence resulted from the feature correspond-
ence specified in Fig. 16.

The blending sequence shown in Fig. 17(a) is another
example of feature correspondence, in which only one of
the pair ears of the mannequin is related to its counter-
part in the tiger head. Fig. 17(b) is an example of spatially
non-uniform shape transition in which the blending pro-
gresses from top to bottom. The mannequin head ap-
pears to turn into the tiger head from top down.

4. Conclusion

This paper presented a new geometric morphing algo-
rithm for shapes defined using polyhedrons. The algo-
rithm directly interpolates the polyhedrons (the “source”
shapes) by using a subdivision surface having a dimen-
sion one higher than the source shapes. The vertices of
the source shapes are treated as geometric constraints to
be satisfied using a variational optimization method,
producing a smooth interpolating surface.

The algorithm combines some of the advantages of the
methods based on variational optimization of volume
implicit function, e.g., that of Turk and O’Brien [19], and
the methods based on a common mesh embedding of the
source polyhedrons, e.g., that of Kanai et al. [3]. As in the
case of the former class of methods, our method produces
smooth transition due to variational optimization. At the
same time, our method allows for feature correspondence
through geometric constraints, e.g., a vertex in a source
shape can be coerced to become a vertex in another
source shape through the morphing.

Our method also allows for various shape transition
effects thanks mainly to manipulable nature of the subdi-
vision surface. For example, deformations of the interpo-
lating surface could produce spatially non-uniform
shape transitions as well as exaggerated blended shape
transitions.

The method we have presented still has much room for
improvements. The foremost on the list of improvements
is the issue of overly smooth blended shapes. As evid-
enced in the examples shown in Fig. 17, the algorithm

creates blended shapes that are too smooth. Detailed
facial features of the tiger or the mannequin head have
been smoothed out in the blended shapes, creating less
appealing blending sequences. We intend to solve this
problem by incorporating multiresolution framework to
shape blending, an approach similar to Lee et al. [6]. In
our proposed solution, we add back detailed features in
the source TS-meshes on top of the smooth blended shapes
by taking advantage of our multiresolution framework.

Almost equally important is the obvious extension of
the 3D shape blending for source shapes having different
surface topology. We must find a method to achieve
topology transcending shape blending as well as an effec-
tive user interface to specify topological evolution.

Other issues of concern include performance improve-
ment and better reparameterization algorithm. Our cur-
rent implementation of the shape-blending algorithm is
not particularly efficient. As mentioned in Section 3,
current implementation took about 5min to create
a blended shape for a blended mesh having 25,000 tri-
angles. We intend to improve both time- and space-
complexities of our algorithm. We also would like to find
a mesh reparameterization algorithm that is better suited
to our purpose.
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Appendix A. Solving multiresolution constraints

The multiresolution constraints are solved by using
local smoothing filter as described by Taubin et al. [30],
which efficiently approximates global variational optim-
ization originally used in Welch and Witkin’s scheme
[31]. By using Taubin’s method, the variational optim-
ization can be approximated with a computational cost
linearly proportional to the number of vertices in the
surface.

We apply smoothing one resolution level at a time.
At each resolution level, we first add shape details as
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specified by constraints attached at the level, followed by
local smoothing. This is repeated from the lowest resolu-
tion level O to the highest resolution level K.

Let é® (k =0,...,K) be the detail added at the resolu-
tion level k. Then the vertex coordinate of the sub-
division surface at level K, which is denoted as ¢®, can be
written as

K — pE-1) ., p(0)a(0)

+PEDLLPMRD 4y B, (A1)

That is, a shape at level K is defined as a combination
of details defined at all resolution levels. We picked an
exponential weighting function p® (k=0,...,K) to
weight the contributions from multiple resolution levels,

BB = kK, (A2)

A normalized form below is used to weight resolution
level k,

(k)
l;—z, (A.3)
where

The steps needed to determine the shape of a surface are
as follows, assuming that we have a set of linear equa-
tions for given constraints as defined in (8).

Resolution level 0: Consider a “formal” detail coeffic-
ient vector €; that satisfies a set of constraints at the
level 0;

MO = p©), (A.5)

Then, the actual detail & of the shape is computed as
o BY
&0 = FC(I) (A.6)

by using the normalized weight described above. From
(A.5) and(A.6), the equation on &© to be solved becomes

(0)0(0) _@ ©
MPe® = = . (A7)

We apply local smoothing to the surface so that this
constraint equation (A.7) is satisfied. As we do, we simply
use

¢ =0 (A.8)

as the initial value for the smoothing.
Resolution level k > 0: At resolution level k > 0, con-
sider a vector & that satisfies the following equation;

MO — ¢, (A9)

We want ¢ to have only the contribution from the level
k, so we subtract contributions from the levels 0 to
(k — 1). The sum of contributions of details from the level
0 up to level (k — 1) is
k—1
Y PETD . pRe®, (A.10)
A=0
Thus, with weighting, ¢* and ¢ must satisfy the follow-
ing equation:
ﬁ(o) + -+ ﬁ(k)

ﬂZ

k-1
— Y P PUE®, (A.11)
i=0

o) —

From (A.10) and (A.11), we obtain the equation to solve
for ¢®;
) 4 ... (k)
B+ +p L0
ﬁZ

k—1
_ M""( Yy pk-D ...PM)@OJ), (A.12)

A=0

M®at —

As the initial value for the level k, we want the sum of
detail contributions from the level 0 to (k — 1), i.e., the
formula (A.10), but not that of k.

As each resolution level 4 is weighted by *, the initial
value for the actual detail vector ¢® in the level k is given
by

ﬁ(k) k—1 - o
FeEsnry SEP S (a13)

References

[1] Lazarus F, Verroust A. Three-dimensional metamorpho-
sis: a survey. The Visual Computer 1998;14:373-89.

[2] Kent JR, Carlson WE, Parent RE. Shape transformation
for polyhedral objects. Computer Graphics (Proceedings
Siggraph '92). 1992. p. 47-54.

[3] Kanai T, Suzuki H, Kimura F. 3D geometric metamor-
phosis based on harmonic maps. The Visual Computer
1998;14(4):166-76.

[4] Gregory A, State A, Lin M, Monocha D, Livingston M.
Feature-based surface decomposition for correspondence
and morphing between polyhedra. In: Metaxas D,
Thalman NM, editors. Computer Animation 98, IEEE
Computer Society Press, USA. 1998. p. 64-71.

[5] Kanai T, Suzuki H, Kimura F. Metamorphosis of arbit-
rary triangular meshes. IEEE Computer Graphics and
Applications 2000;20(2):62-75.

[6] Lee AWF, Dobkin D, Sweldens W, Schroder P. Multi-
resolution mesh morphing. Computer Graphics (Proceed-
ings Siggraph ’99). 1999. p. 343-50.

[7] Lee AWF, Sweldens W, Schroder P, Cowsar L, Dobkin D.
MAPS: multiresolution adaptive parametrization of surfa-
ces. Computer Graphics (Proceedings Siggraph ’98). 1998.
p. 95-104.



58 R. Ohbuchi et al. | Computers & Graphics 25 (2001) 41-58

[8] DeCarlo D, Gallier J. Topological evolution of surfaces.
Graphics Interface *96. 1996. p. 194-203.

[9] Lerios A, Garfinkle CD, Levoy M. Feature-based volume
metamorphosis. Computer Graphics (Proceedings Sig-
graph ’95). 1995. p. 449-56.

[10] Beier T, Neely S. Feature-based image metamorphosis.
Computer Graphics (Proceedings Siggraph ’92). 1992.
p. 35-42.

[11] Hughes JF. Scheduled Fourier volume morphing.
Computer Graphics (Proceedings Siggraph '92). 1992.
p. 43-6.

[12] He T, Wang S, Kaufman A. Wavelet-based volume
morphing. IEEE Visualization *94. 1994. p. 85-92.

[13] Levin D. Multidimensional reconstruction by set-valued
approximation. IMA Journal of Numerical Analysis
1986;6:173-84.

[14] Raya SP, Udupa JK. Shape-based interpolation of multi-
dimensional objects. IEEE Transactions on Medical Imag-
ing 1990;9(1):32-42.

[15] Kaul A, Rossignac J. Solid-interpolating deformations:
construction and animation of pips. Eurographics *91.
1991. p. 493-505.

[16] Payne B, Toga AW. Distance field manipulation of surface
models. IEEE Computer Graphics and Applications
1992;12(1):65-71.

[17] Cohen-Or D, Levin D, Solomovici A. Three-dimensional
distance field metamorphosis. ACM Transactions on
Graphics 1998;17(2):116-41.

[18] Whitaker R, Breen D. Level-set models for the de-
formation of solid objects. Proceedings of Third
International Workshop on Implicit Surfaces. 1998.
p. 19-35.

[19] Turk G, O’Brien JF. Shape transformation using varia-
tional implicit functions. Computer Graphics (Proceedings
Siggraph ’99). 1999. p. 335-42.

Ryutarou Ohbuchi is currently an associate Professor of
the Computer Science Department at Yamanashi Uni-
versity. He received his B.Sc. in Electrical and Electronic
Engineering from the Sophia University, Tokyo, Japan,
in 1981, his M.Sc. in Computer Science from the
University of Electro-Communications, Tokyo, Japan, in
1983, and his Ph.D. in Computer Science from the Uni-
versity of North Carolina at Chapel Hill, in 1994.
He worked as a research staff at IBM Tokyo Research
Laboratory from 1994 to 1999. His current research
interest include computer graphics, human-computer
interaction, and geometric modeling. He is a member of
the ACM, IEEE, IPSJ (Information Society of Japan),
and JSSST (Japan Society for Software Science and
Technology).

[20] Catmull E, Clark J. Recursively generated b-spline surfa-
ces on arbitrary topological meshes. Computer-Aided
Design 1978;10(6):350-5.

[21] Doo D, Sabin M. Behaviour of recursive division surfaces
near extraordinary points. Computer-Aided Design
1978;10(6):356-60.

[22] Loop C. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Department of Mathe-
matics, 1987.

[23] Dyn N, Levin D, Gregory JA. A butterfly subdivision
scheme for surface interpolation with tension control.
ACM Transactions on Graphics 1990;9(2):160-9.

[24] Gortler SJ, Cohen MF. Hierarchical and variational geo-
metric modeling with wavelets. ACM Symposium on
Interative 3D Graphics. 1995. p. 35-42.

[25] Zorin D, Schroder P, Sweldens W. Interactive multiresolu-
tion mesh editing. Computer Graphics (Proceedings
Siggraph *97). 1997. p. 259-68.

[26] Shinagawa Y, Kunii TL. The homotopy model: a general-
ized model for smooth surface generation from cross sec-
tional data. The Visual Computer 1991;7(2-3):72-86.

[27] Moore D. Graphics Geoms III. New York: Academic
Press, 1992, (Ch. Subdividing Simplices, p. 244-9).

[28] Lounsbery M, DeRose TD, Warren J. Multiresolution
analysis for surfaces of arbitrary topological type. ACM
Transactions on Graphics 1997;16(1):34-73.

[29] Takahashi S. Multiresolution constraints for designing
subdivision surfaces via local smoothing. Computer
Graphics and Applications (Proc. of Pacific Graphics '99),
IEEE Computer Society Press, USA. 1999. p. 168-78.

[30] Taubin G. A signal processing approach to fair surface
design. Computer Graphics (Proceedings Siggraph '95).
1995. p. 351-8.

[31] Welch W, Witkin A. Variational surface modeling. Com-
puter Graphics (Proceedings Siggraph *92). 1992. p. 157-66.

Yoshiyuki Kokojima is currently a master course graduate
student of the Department of Computer Science at Gunma
University. He received his B.Sc. degree in Computer
Science from Gunma University in 1999. His research inter-
ests include computer graphics and computer vision.

Shigeo Takahashi is currently an associate Professor of
the Computer Center at Gunma University. He received
his B.Sc., M.Sc., and Ph.D. degrees in Computer Science
from the University of Tokyo in 1992, 1994, and 1997,
respectively. His research interests include computer
graphics and geometric modeling. He is a member of the
ACM, IEEE Computer Society, IPSJ, and IEICE (The
Institute of Electronics, Information and Communica-
tion Engineers).



