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Abstract

Topological volume skeletons represent level-set graphs
of 3D scalar fields, and have recently become crucial to
visualizing the global isosurface transitions in the volume.
However, it is still a time-consuming task to extract them
especially when input volumes are large-scale data and/or
prone to small-amplitude noise. This paper presents an effi-
cient method for accelerating the computation of such skele-
tons using adaptive tetrahedralization. The present tetrahe-
dralization is a top-down approach to linear interpolation
of the scalar fields in that it selects tetrahedra to be subdi-
vided adaptively using several criteria. As the criteria, the
method employs a topological criterion as well as a geo-
metric one in order to pursue all the topological isosurface
transitions that may contribute to the global skeleton of the
volume. The tetrahedralization also allows us to avoid un-
necessary tracking of minor degenerate features that hide
the global skeleton. Experimental results are included to
demonstrate that the present method smoothes out the orig-
inal scalar fields effectively without missing any significant
topological features.

1 Introduction

Direct volume rendering is a powerful tool for visualiz-
ing complicated inner structures in a volume, and thus help-
ful to computer-aided modeling and testing as well as med-
ical diagnosis and scientific simulation. However, it still
requires significant features to be identified so that it can
emphasize them individually in the final visualization im-
ages. As the key to the analysis of such significant features,
topological volume skeletons, which arelevel-set graphsof
3D scalar fields, have recently received much attention in

the fields of volume visualization and computational geom-
etry. This is because the level-set graph tracks topological
transitions of isosurface components according to the scalar
field, and thus serves as a landmark for exploring underly-
ing inner structures. Examples can be found in [1, 13, 14].

Although the level-set graph is helpful, its complexity
depends on the number ofcritical points that invoke topo-
logical changes of isosurfaces. This means that the level-set
graph may become too complicated if the resolution of the
input dataset exceeds some limit because it represents the
critical points as its nodes. The level-set graph can also cap-
ture minor features such asdegeneratecritical points, which
arise from the object interiors due to the small-amplitude
noise or zero-gradient scalar fields. This is more likely
to occur if the scalar field values are quantized to a small
number of bits because scalar fields of small gradients are
reduced to stepwise scalar fields in this case. While Taka-
hashi et al. [13] presented a method for simplifying the com-
plicated level-set graph to distinguish its global structure,
the method still requires considerable computation time to
extract an initial level-set graph if the input dataset is too
complicated.

This paper presents a fast and robust method for com-
puting the topological volume skeletons by introducing an
adaptive tetrahedralization stage prior to tracking the skele-
tons. The present method introduces a top-down approach
to adaptive tetrahedralization, because we have to extract
the global topological skeleton of the entire volume without
adding unnecessary tetrahedra for an appropriate interpola-
tion of the scalar field. For selecting tetrahedra to be sub-
divided, the method employs a criterion that takes into ac-
count topological errors, in addition to the conventional cri-
terion based on geometric errors. These criteria generate an
interpolation of the 3D scalar field in such a way that we can
track all the necessary topological features to constitute the



global skeleton of the volume. Furthermore, the adaptive
subdivision scheme also prevents us from worrying about
the minor degenerate critical points that have little influence
on the underlying global skeleton. This is accomplished
by assigning larger tetrahedra to small-amplitude noise and
zero-gradient scalar fields for the approximation. Exper-
imental results are demonstrated to show that the present
method generates a smooth interpolation of a 3D scalar field
while preserving its global topological skeleton.

This paper is organized as follows: Section 2 describes
an algorithm for extracting the topological volume skele-
tons and mentions the requirements for our adaptive tetra-
hedralization scheme. Section 3 presents the details of the
adaptive tetrahedralization method employed in our frame-
work. After demonstrating several experimental results to-
gether with the feasibility of the present method in Sec-
tion 4, Section 5 concludes this paper and refers to future
work.

2 Topological Volume Skeletonization

The level-set graphs of 3D scalar fields were first intro-
duced to the visualization community by Bajaj et al. [1].
Actually, they developed a fast algorithm for extracting
level-set graphs called thecontour trees(CTs) [15] that
track the change in the number of connected components of
isosurfaces. This algorithm was further extended to objects
of any dimension by Carr et al. [3] in such a way that it has
O(n log n + tα(t)) time complexity. Here, the algorithm
is based on the assumption that all the volume cells of the
input dataset are linearly interpolated by tetrahedralization,
andn andt denote the numbers of vertices and tetrahedra
there, respectively. One of the problems with the CTs is that
the original CTs cannot represent the topological type (i.e.
genus) of an isosurface. However, this problem has recently
been solved by Pascucci et al. [10], where they calculate the
changes in the Euler characteristics of isosurfaces.

Our algorithm first extracts a topological volume skele-
ton including relatively insignificant features, and then sim-
plifies the skeleton to obtain the underlying global structure
by analyzing the skeleton itself. In fact, the skeletoniza-
tion algorithm we use here is newly developed by combin-
ing the algorithms of Carr et al. [3], Pascucci et al. [10]
and Takahashi et al. [13]. The remainder of this section
describes each step of the skeletonization algorithm. The
tetrahedralization step prior to this skeletonization step will
be described in Section 3.

2.1 Constructing Join and Split Trees

Our topological volume skeletonization begins with con-
structing CTs by tracking the change in the number of con-
nected isosurface components as the scalar field value re-

duces. For this purpose, we use the algorithm of Carr et
al. [3] in order to construct two graphs individually, which
are thejoin tree (JT) that represents the appearance and
merging of isosurface components as the scalar field value
decreases, andsplit tree(ST) that represents the disappear-
ance and splitting of isosurface components. Suppose that
we have already generated a linear interpolation of the in-
put 3D scalar field by using tetrahedralization. As shown
in Figures 1(a) and (b), the JT and ST have voxels as nodes
if they serve as vertices in the tetrahedralization. Note that,
throughout this paper, the nodes of the graph are arranged
from top to bottom according to the scalar field values.
Since the JT and ST are dual if we reverse the axis of the
scalar field, we will consider how to construct the JT only.

Before constructing the JT, the list of voxels associated
with the tetrahedralization is sorted in a descending order
according to the scalar field. If two voxels have the same
scalar field value, they are compared according to the given
indices to make the total ordering of the voxels. The first
voxel is then removed from the list and added to the JT,
which can be described as follows.

Suppose thatn is the first voxel we have just pulled out of
the list. From a set of voxels adjacent ton in the tetrahedral-
ization, we extract voxels that have larger scalar field values
thann as{u1, . . . , ul}. Since the voxelui (1 ≤ i ≤ l) has
been already handled earlier thann, it belongs to some con-
nected componentCi of the existing JT. Let us denote the
node having the smallest scalar field value in the connected
componentCi by ri. If ri is identical with the noden itself,
we can skip the current nodeui and turn our attention to the
next neighboring voxelui+1. Otherwise, we connectri and
n with a link in the JT. If the target noden has no adjacent
nodes that are larger in the scalar field, it will be inserted to
the existing JT independently as a new connected compo-
nent. This process allows us to construct the JT as shown
in Figure 1(a), which represents the appearance and merg-
ing of isosurface components when the scalar field value
decreases. In the same way, our skeletonization algorithm
constructs the ST as shown in Figure 1(b) to locate the dis-
appearance and splitting of isosurface components.

2.2 Constructing Augmented Contour Trees

Our next step is to construct a graph called theaug-
mented contour tree(ACT) as an earlier representation of
the CT. This graph also contains all the voxels that are in-
volved in the tetrahedralization as the JT and ST do.

The ACT is defined to be a graph that tracks the topo-
logical transitions of isosurface components while passing
through all the voxels as the scalar field value decreases.
Carr et al. [3] proved that the ACT can be constructed from
the JT and ST because the JT captures the top ends and up-
ward branches of the ACT while the ST keeps its bottom
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Figure 1. Steps for the skeletonization algorithm: (a) A join tree (JT), (b) a split tree (ST), (c) an
augmented contour tree (ACT), (d) an augmented contour tree (ACT) with isosurface genera, (e) a
contour tree (CT) with isosurface genera, and (f) a volume skeleton tree (VST).

ends and downward branches. Actually, our algorithm con-
structs the ACT by identifying its ends and branches from
both its top and bottom while referring to the JT and ST.
For example, suppose a node in the JT is a top end and its
corresponding node in the ST has only one downward link.
In this case, the node and its downward link in the JT is
moved to the ACT, and the corresponding node in the ST
and its incident links are removed. If the node in the ST has
both upward and downward incident links, we connect its
upper and lower adjacent nodes directly with a link in the
ST. The same process can be carried out for the node that
corresponds to a bottom end node in the ST and has only
one upward link in the JT.

In this way, we can construct the ACT by reducing its
undetermined part step by step because the end nodes in
the JT and ST also stand for the end nodes in the undeter-
mined part of the ACT. Figure 1(c) shows the final ACT
constructed from the JT (Figure 1(a)) and ST (Figure 1(b)).

2.3 Extracting Changes in Isosurface Genus

So far we have constructed the ACT that tracks the
change in the number of connected isosurface components.
However, it is possible that we have critical points that
invoke only the change in the isosurface topological type
(i.e. genus) without changing the number of its connected
components. Example include the transition from a sphere
to a torus and also the reverse transition. This type of crit-
ical point is also very important when extracting the global

topological skeleton from the input volume.
Our algorithm extracts such critical points by taking ad-

vantage of the algorithm of Pascucci et al. [10]. In fact,
their algorithm calculates the change in the Euler character-
istic of isosurface components when they go through each
voxel, by calculating the change in the Euler characteristic
associated with simplices around the voxel. Here, the Euler
characteristicχ is defined as

χ = #{vertices} −#{edges}
+#{triangles} −#{tetrahedra}, (1)

where#{X} represents the number of X’s. The change
in the Euler characteristic of simplices around the voxel is
calculated by finding its incident edges, triangles, and tetra-
hedra. Suppose thatχl andχs are the Euler characteristics
of the simplices, where the two values correspond to the
isosurface components just before and after passing through
the target voxel, respectively. To calculateχl, our algorithm
counts simplices that have the target voxel as the vertex hav-
ing the smallest scalar field value of all the corner vertices.
The algorithm then applies Equation (1) for findingχl while
setting#{vertices} = 1. The other Euler characteristicχs

is obtained by finding simplices where the target voxel is
the largest in the scalar field. At last, the change in the Eu-
ler characteristic when each voxel is swept by the isosurface
is calculated asχl − χs.

Indeed, this value allows us to detect the change in the
genus of each isosurface component. For example, if the
voxel causes the change in the Euler characteristic while
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Figure 2. Connectivity of the critical points in
the volume skeleton tree.

the number of isosurface components is left unchanged, it
definitely affects the genus of the corresponding isosurface
component. In this way, our algorithm can extract a spe-
cific type of critical point that changes only the genus of
an isosurface component, as well as a critical point that
changes the number of isosurface connected components.
Figure 1(d) shows how the topological type (i.e. genus) of
each isosurface component changes on the ACT.

2.4 Constructing the Contour Tree

Constructing the CT from the ACT just requires us to
remove non-critical nodes from the ACT. Figure 1(e) shows
an example of the CT, which is extracted from the ACT by
removing the non-critical nodes represented by the small
circles in Figure 1(d).

In this process, our algorithm transfers the non-critical
nodes from the ACT to the remaining links in the CT. In
other words, a link of the CT possesses a list of non-critical
voxels that originally serve as nodes in the ACT. This helps
us simplify a complicated volume skeleton for finding the
global structure of the input volume, which will be de-
scribed in Section 2.6.

2.5 Constructing the Volume Skeleton Tree

This step is devoted to finding a topological volume
skeleton having only simple critical points, by resolving all
the multiple critical points of the resultant CT into simple
ones. In this paper, we call this type of level-set graph a
volume skeleton tree(VST) [13]. The simple critical points
of the VST have connectivities as shown in Figure 2, where
each connectivity is classified according to the type and de-
gree of the corresponding node.

Figure 2 suggests that isosurface transitions around sim-
ple critical points are classified into six types; appearance of
a new isosurface component (Figure 2(a)), merging two iso-
surface components into one (Figure 2(b)), increment of the
genus of an isosurface component (Figure 2(c)), splitting
one isosurface component into two (Figure 2(d)), decrement
of the genus of an isosurface component (Figure 2(e)), and

disappearance of an existing isosurface component (Fig-
ure 2(f)). Here, the subscript of the symbolC represents
the number of negative eigenvalues of the Hessian matrix
at the corresponding critical point. Since the critical points
C2 andC1 have different degrees, we distinguish between
them by indicating the degree of each critical node such as
3-C2, 2-C2, 3-C1, and2-C1. According to this classifica-
tion, we can obtain the VST from the CT by resolving a
multiple critical point into simple ones. When resolving the
multiple critical points, we assign an empty voxel list to a
newly created link. For example, in Figure 1(e), the node
at the scalar field value 120 has three upward links in the
CT. This means that we can resolve this multiple node into
two nodes as shown in Figure 1(f) because the multiplicity
of the corresponding critical point is 2.

2.6 Simplifying the Volume Skeleton Tree

For analyzing the global topological structure from the
input volume, our algorithm first extracts a VST in such a
way that it still contains rather minor critical points. In fact,
these minor critical points themselves are less important,
but still necessary for simplifying the VST appropriately.
This is because it is impossible to evaluate how each criti-
cal point contributes to the global structure only by looking
at its local features. Note that while an adaptive tetrahedral-
ization scheme is also introduced to reduce the complexity
of the extracted VST, it only tries to eliminate degenerate
critical points that have little influence on the global struc-
ture of the input volume and thus are completely negligible.

In our framework, by following the scheme presented in
[13], we intend to reduce the complexity of the extracted
VST until the VST becomes simple enough to express the
underlying global structure of the volume. This is accom-
plished by assigning a weight value to each link of the VST
and then removing the link having the smallest weight value
one by one. Takahashi et al. [13] suggest that three patterns
in the VST can be candidates for the removal as shown in
Figure 3. In this figure, the third pattern can contain other
critical points between the two end critical points while in
the first and second patterns the two critical points are im-
mediate neighbors.

As the weight value for each link, Takahashi et al. [13]
used the valueD that represents the difference in the scalar
field between the end critical points of the link. However,
this definition of weight values is sometimes unsuccess-
ful in extracting important topological transitions of isosur-
faces because the sizes of the corresponding isosurfaces are
not taken into account. Instead of this, we define a new
weight value that is given by

V ×D, (2)

where V represents the volume swept by the isosurface
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Figure 3. Candidate patterns to be removed
from the volume skeleton tree in the simplifi-
cation process.

component that corresponds to the target link. Note that the
valueV is equivalent to the size of the interval volume [4]
bounded by the two isosurface components containing the
end critical points. In our framework, the valueV can be
calculated easily because each link of the VST has a list
of voxels assigned to it. It is clear that the volume of each
voxel can be calculated as a quarter of the total volume of its
incident tetrahedra because a tetrahedron is shared by four
corner voxels. Now the swept volumeV of the VST link
is obtained by summing up the volumes of the voxels that
belong to the link.

This formulation is fully justified because the new
weight valueV × D actually represents the size of the 4D
subspace swept by the corresponding isosurface, which is
contained in the entire 4D space spanned by the(x, y, z)-
coordinates and scalar field. Our experiments show that this
formulation of the weight value allows us to obtain the sim-
plified version of the VST that adequately reflects the global
behavior of isosurface transitions with respect to the scalar
field.

It is noted that while simplifying the VST, our algorithm
transfers the list of voxels from the removed link to one of
its incident link that still remains in the VST. This makes
precise extraction of the global volume skeleton because we
properly take over the interval volume removed in the sim-
plification process.

3 Adaptive Tetrahedralization

This section describes a method foradaptive tetrahe-
dralizationfor linear interpolation of 3D scalar fields, which
serves as an earlier stage for extracting topological volume
skeletons. As described previously, the number of primitive
tetrahedra becomes enormous if we subdivide each volume
cell uniformly. Thus, our method reduces the number of
tetrahedra by adjusting their sizes according to the local fea-
tures of the 3D scalar fields. In addition, this enables robust
extraction of topological volume skeletons even when the
input volume contains high-frequency noise of small am-
plitude.

Figure 4. Tetrahedral decomposition rule in
the bisection method.

Conventional adaptive tetrahedralization methods are
roughly classified into two groups:top-down approaches
that adaptively subdivide a large tetrahedron into small ones
as the need arises, andbottom-up approachesthat simplify
tetrahedral subdivision by merging small tetrahedra into a
large one. The top-down approaches include thebisection
method[8] that subdivides a tetrahedron into two tetrahedra
of equal size, and thered-green method[2] that introduces
tetrahedra of two different shapes called “red” and “green.”
Gerstner et al. [5] and Grosso et al. [6] proposed techniques
for efficient isosurface extraction using the above two top-
down methods, respectively. Moreover, Holliday et al. pre-
sented a method for generating smooth interpolation us-
ing the Coons volume [7], even when the tetrahedralization
contains T-vertices, i.e., the inconsistency between the faces
of adjacent tetrahedra. On the other hand, as the bottom-up
methods, Zhou et al. [16] developed a method for merg-
ing tetrahedra having specific connectivity generated by the
bisection rule, and Staadt et al. [11] devised a method for
simplifying tetrahedra by contracting edges. In our imple-
mentation, we use the bisection method that is the simplest
top-down approach introduced by Maubach [8], in order to
assign fine tetrahedra adaptively to significant volume fea-
tures.

3.1 The Bisection Method

Suppose that the input volume is decomposed intoN ×
N × N initial volume cells, each of which contains(2n +
1) × (2n + 1) × (2n + 1) voxels. This implies that the
resolution of the input volume is(2nN +1)× (2nN +1)×
(2nN+1), while we often setN = 1. The bisection method
first partitions each initial cell into six tetrahedra as shown
on the left of Figure 4. Then each tetrahedron is further
bisected if it cannot sufficiently approximate the 3D scalar
field inside it according to some appropriate error criterion.
Figure 4 shows how a tetrahedron is bisected in this method
from left to right, where the longest edge is bisected each
time.

This bisection rule requires that an edge we want to bi-
sect must be the longest edge in every incident tetrahedron.
If any of the incident tetrahedra does not satisfy this condi-
tion, we turn our attention to the longest edge of that inci-

5



dent tetrahedron. We then check again if this edge is also
the longest of all the other incident tetrahedra. If all the in-
cident tetrahedra share the edge as the longest one this time,
we bisect the edge together with its incident tetrahedra and
then go back to the previous edge. Otherwise, we further
find incident tetrahedra that violate the condition and check
their longest edges. In this way, the process of adaptive
tetrahedralization terminates when all the tetrahedra satisfy
the given error criterion.

3.2 Criteria for the Adaptive Tetrahedralization

To extract the topological volume skeleton correctly, we
have to carefully formulate the criteria for estimating ap-
proximation errors of tetrahedra. For this purpose, this
study introduces a topological error criterion as well as a
conventional geometric one, so that the present method can
capture the significant volume skeleton in early stages of the
adaptive tetrahedralization.

3.2.1 Geometric Error Criterion

As the geometric error criterion, this method employs the
root mean square error (RMSE) that is the most commonly
used. The RMSE is estimated for each tetrahedron as fol-
lows. Suppose that a tetrahedron has a list of interior voxels
that have the scalar field values{pi} (i = 1, 2, . . . ,m). On
the other hand, we can calculate the corresponding approx-
imate scalar field values{qi} (i = 1, 2, . . . ,m) by linearly
interpolating the four corner voxels in the tetrahedron using
the barycentric combination. Now the RMSE of this tetra-
hedron can be written as√∑m

i=1(pi − qi)2

m
. (3)

In this case, the method bisects tetrahedra where their
RMSE errors exceed the given geometric error threshold,
which helps us control the final adaptive tetrahedralization.
In our implementation, this is possible because each tetra-
hedron possesses a list of interior voxels at the initial tetra-
hedralization stage so that the method refers to the list for
estimating the corresponding RMSE. Furthermore, the in-
terior voxels of each tetrahedron are accurately distributed
to new tetrahedra when the original tetrahedron is bisected.
This implementation conveniently prevents us from recal-
culating the list of interior voxels when the adaptive tetra-
hedralization is performed.

3.2.2 Topological Error Criterion

The geometric error criterion based on the RMSE allows
us to assign smaller tetrahedra to 3D scalar fields of steep
gradient that appear around the object boundary, and thus it

125

158(+)

142(+)

114(-)

106(-)

120(-)

115(-)

Figure 5. Topological error criteria: the inte-
rior voxel having the scalar field value 125
appears to be a critical point if it is adapted
to the bisection point of the edge.

generally provides a sound interpolation that reflects the un-
derlying volume features with the smaller number of tetra-
hedra. However, the criterion often requires more tetrahedra
to capture the topological features that are indispensable for
the simplification of volume skeletons because the previous
geometric criterion only considers local geometric features.
This motivates us to introduce a new topological criterion
that brings global volume features more effectively to our
tetrahedralization scheme.

The topological error criterion here has close relation-
ships with that introduced by Gerstner et al. [5]. In fact,
they check if critical points are contained in a set of tetrahe-
dra that share the longest edge as shown in Figure 5. How-
ever, their goal differs from ours in that they try to control
the adaptive tetrahedralization to keep the topological type
(genus) of the target isosurface, while our goal is to extract
the global evolution of the isosurfaces over the entire vol-
ume. In addition, their method first performs the bisection-
based adaptive tetrahedralization using some geometric cri-
terion as a preprocessing step, and constructs the hierarchies
of critical points by traversing the refined tetrahedralization
in a bottom-up manner. Conversely, our method introduces
a topological criterion that aims at a top-down tetrahedral-
ization approach while following the edge-based error es-
timation of Gerstner et al. For this purpose, we evaluate
the importance of topological features associated with crit-
ical points as the topological errors, although Gerstner et
al. only examine the existence of the critical points.

Our topological error criterion is formulated to simulate
the weight values assigned to the links of the VST (See Sec-
tion 2.6). For calculating the topological errors, we first find
an edge and its associated tetrahedra as shown in Figure 5,
where the edge is the longest in each tetrahedron and thus
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can be bisected immediately. In this figure, the big black
disks represent the voxels that constitute the corner vertices
of the incident tetrahedra, and small disks represent the inte-
rior voxels of the tetrahedra. Actually, our topological error
criterion tests if any of the interior voxels can serve as a
critical point in the space defined by the incident tetrahedra.

Whether an interior voxel becomes a critical point or
not can be determined by evaluating the difference in the
scalar field from the corner voxels (i.e., black disks) in Fig-
ure 5 [5, 13]. In practice, we assign a sign “+” to the corner
voxel if it has a larger scalar field value than the interior
voxel, and a sign “−” if it has a smaller scalar field value.
We then consider the boundary edges of the neighboring
tetrahedra (except the interior edge to be split), and elim-
inate the edges if their endpoints has different signs. Fi-
nally, we count the number of connected components for
each sign, and conclude that the interior voxel is critical if
either of the two numbers differs from 1. Figure 5 shows a
case where the voxel having the scalar field value 125 (rep-
resented by small black disk) becomes critical if it is em-
ployed as the interior voxel to be examined. In this case,
the connected components of the corner vertices are{158}
and{142} for the sign “+,” and {115, 106, 114, 120} for
the sign “−.”

It is also necessary to measure the topological error if
any of the interior voxels becomes a critical point, which
indeed provides us with an effective criterion for the top-
down approach to the adaptive tetrahedralization. In order
to estimate the topological error, we first collect scalar field
values of the corner voxels (black disks) and the interior
voxel (white disk) we have just employed, and find the dif-
ference between the maximum and minimum scalar field
values among them. The topological error is obtained by
multiplying this difference and the volume of the space de-
fined by the neighboring tetrahedra together, as shown in
Figure 5. It follows from Equation (2) that the definition
of these topological errors just approximates weight values
assigned to the VST links that are affected by the space de-
fined by the neighboring tetrahedra. Note that, if the topo-
logical error depends on the selection of interior voxels, the
largest topological error is used to represent the final er-
ror. Moreover, this error criterion effectively avoids degen-
erate critical points because the degenerate critical points
have little difference in the scalar field in most cases. In
this way, this formulation enables the top-down approach
to the adaptive tetrahedralization while tracking all the im-
portant topological features. In fact, as shown in Figure 6,
the tetrahedralization with the topological error criterion re-
flects topological volume skeleton more accurately than that
with the previous geometric criterion.

3.2.3 Hybrid Error Criteria

Although the tetrahedralization generated using the above
topological error criterion undoubtedly represents signifi-
cant features of the topological volume skeleton, it still con-
tains unexpectedly discontinuities of the 3D scalar field un-
fortunately. In practical cases, the adaptive tetrahedraliza-
tion needs to produce a smoother interpolation while pre-
serving the significant topological features especially when
it is used to visualize the underlying inner structures in the
volume. For this purpose, our tetrahedralization scheme
uses the hybrid error criteria that incorporate both the ge-
ometric and topological error criteria. In our implementa-
tion, the method first uses the topological error criterion to
track the significant global structures of the input volume,
and then applies the geometric error criterion to generate a
smooth interpolation of the 3D scalar field.

4 Experimental Results

This section presents several experimental results to
demonstrate the applicability of our method. Our prototype
system has been implemented on a Linux-based PC system
(CPU: Pentium IV 2.4GHz, RAM: 1GB).

Suppose a 3D scalar field represented by the following
function:

f(x, y, z) = 4c2
(
(x−R)2 + (z −R)2

)
−

(
(x−R)2 + y2 + (z −R)2 + c2 − d2

)2

+ 4c2
(
(x + R)2 + (z + R)2

)
−

(
(x + R)2 + y2 + (z + R)2 + c2 − d2

)2
, (4)

where c = 0.6, d = 0.5, and R = 0.2. By taking
samples of this function, a regular volume dataset of res-
olution 65 × 65 × 65 was generated for our experiments.
Figures 6(a), (b), and (c) show tetrahedralizations of this
dataset and the corresponding volume skeletons where an
ordinary uniform tetrahedralization scheme, an adaptive
tetrahedralization scheme with the geometric criterion, and
an adaptive tetrahedralization scheme with the topologi-
cal criterion are applied, respectively. As shown in Fig-
ure 6(a), the ordinary uniform tetrahedralization produces
a large number of minor critical points due to the discrete
sampling and quantization whereas it can generate a smooth
interpolation of the scalar field. Figure 6(b) exhibits a result
obtained using an adaptive subdivision based on the geo-
metric error criterion. Although the geometric criterion is
helpful in generating a rather smooth interpolation, it offers
incorrect topological features if the number of tetrahedra is
limited as shown in the figure. To the contrary, as shown in
Figure 6(c), the tetrahedralization and skeletonization algo-
rithm with the topological criterion can extract a correct vol-
ume skeleton with a small number of tetrahedra. However,
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(a) (b) (c)

Figure 6. Tetrahedralizations and topological volume skeletons of a 65 x 65 x 65 dataset generated
from the volume function of Equation (4): (a) An ordinary uniform tetrahedralization is used (No. of
tetrahedra: 1,572,864). (b) An adaptive tetrahedralization based on the geometric error criterion
is used (No. of tetrahedra: 960). (c) An adaptive tetrahedralization based on the topological error
criterion is used (No. of tetrahedra: 904).

it can only produce a poor interpolation of the 3D scalar
field. It took 16 minutes to extract the topological volume
skeleton for the case in Figure 6(a) while only 5 seconds (4
seconds for tetrahedralization and 1 second for skeletoniza-
tion) for both Figures 6(b) and (c).

Figure 7 shows the nucleon dataset of resolution41 ×
41 × 41 [9] where the two-body distribution probability
of a nucleon in the atomic nucleus16O is simulated. Fig-
ures 7(a), (b), and (c) show an adaptive subdivision with ap-
proximately 10,000 tetrahedra, an adaptive subdivision with
approximately 30,000 tetrahedra, and an ordinary uniform
subdivision with 384,000 tetrahedra, respectively. These re-
sults are accompanied by the initial and simplified VSTs
together with the corresponding final visualization results
where the topological features are accentuated [13, 14].
Here, the hybrid error criteria are used to generate the adap-
tive subdivision. The tetrahedralization with approximately
10,000 tetrahedra in Figure 7(a) yields only a roughly ap-

proximated volume skeleton and thus the final visualization
result is not satisfactorily refined. Nonetheless, the tetra-
hedralization only with approximately 30,000 tetrahedra al-
lows us to generate excellent results without worrying about
minor degenerate critical points as shown in Figure 7(b).
Surprisingly, this visualization result can be matched to that
in Figure 7(c), which is obtained using 384,000 tetrahedra.
Note that when generating the visualization results on the
right, we use the scalar field values assigned to the origi-
nal regular volume datasets. Furthermore, we assign a new
attribute value to each voxel so that we can take advantage
of multi-dimensional transfer functions [14] to emphasize
inner structures in the volume. Thanks to the adaptive tetra-
hedralization, our method only calculates the new attribute
values for the voxels involved in the adaptive tetrahedral-
ization, and then interpolates the values for other voxels us-
ing the barycentric coordinates. This actually accelerates
the rendering process if the computational complexity for
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(a)

(b)

(c)

Figure 7. Effects of adaptive tetrahedralization for visualizing the nucleon dataset of resolution
41 x 41 x 41: Tetrahedralizations, initial volume skeleton trees, simplified volume skeleton trees,
and visualization results with topological features accentuated when (a) an adaptive subdivision
with approximately 10,000 tetrahedra is used, (b) an adaptive subdivision with approximately 30,000
tetrahedra is used, and (c) an ordinary uniform subdivision with 384,000 tetrahedra is used.

Figure 8. Visualization of the antiproton-hydrogen atom collision volume dataset with resolution 129
x 129 x 129: (a) An adaptive subdivision where the number of tetrahedra is approximately 40,000, (b)
the corresponding volume skeleton tree after the simplification, and (c) the final visualization result.
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calculating the new attribute values is high. Our prototype
system extracted the initial topological volume skeletons in
7 seconds (6 seconds for tetrahedralization and 1 second for
skeletonization), 25 seconds (21 seconds for tetrahedraliza-
tion and 4 seconds for skeletonization), and 96 seconds for
Figures 7(a), (b), and (c), respectively. This implies that the
overhead for the adaptive tetrahedralization is small enough
to reduce the computation time of the entire process.

Figure 8 presents the visualization results of the vol-
ume dataset that is obtained by simulating the antiproton-
hydrogen collision at intermediate collision energy below
50keV [12]. Since the resolution of this dataset is129 ×
129 × 129, the ordinary uniform tetrahedralization scheme
runs out of memory space on our computational environ-
ment. However, the present adaptive tetrahedralization
scheme with the hybrid error criteria offers an interpolation
as shown in Figure 8(a), which allows us to effectively ex-
tract the global volume skeleton from this dataset in 60 sec-
onds (53 seconds for tetrahedralization and 7 seconds for
skeletonization). Actually, the method successfully identi-
fies the four-fold nested inclusion relationships of isosur-
faces as shown in Figure 8(b), and thus emphasizes it in the
final visualization image as shown in Figure 8(c).

5 Conclusion

This paper has presented an accelerated method for ex-
tracting topological volume skeletons using the adaptive
tetrahedralization. The adaptive tetrahedralization scheme
enables robust extraction of the volume skeletons by elim-
inating minor degenerate critical points arising from small-
amplitude noise and zero-gradient scalar fields inside ob-
jects. In order to locate the significant volume features
effectively, the topological error criterion as well as the
geometric one was introduced to the adaptive subdivision
scheme. Experimental results demonstrate that the present
method considerably accelerates the topological volume
skeletonization by offering an interpolation that reflects the
significant topological features of the original 3D scalar
fields.

Our future research topics include the automatic con-
trol of error thresholds for the adaptive tetrahedralization.
Our experiments prove that the present method can success-
fully extract correct volume skeletons if it uses more than a
certain number of tetrahedra to approximate the input 3D
scalar field. Nevertheless, it may be possible to reduce the
number of tetrahedra according to the property of the input
dataset by relaxing the accuracy of the interpolation. We
plan to formulate such a control by taking advantage of the
frequency-based analysis of the input volumes.
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