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Figure 1: Screenshot of our system interface for finding correlated subspaces based on biclustering. (a) Classical parallel coordinate plot (PCP).
(b) Clustered PCP. (c) Contracted PCP. (d) Block matrix diagram. (e) History tree. (f) Objective function value.

ABSTRACT

Exploring feature subspaces is one of promising approaches to an-
alyzing and understanding the important patterns in multivariate
data. If relying too much on effective enhancements in manual in-
terventions, the associated results depend heavily on the knowledge
and skills of users performing the data analysis. This paper presents
a novel approach to extracting feature subspaces from multivari-
ate data by incorporating biclustering techniques. The approach
has been maximally automated in the sense that highly-correlated
dimensions are automatically grouped to form subspaces, which
effectively supports further exploration of them. A key idea be-
hind our approach lies in a new mathematical formulation of asym-
metric biclustering, by combining spherical k-means clustering for
grouping highly-correlated dimensions, together with ordinary k-
means clustering for identifying subsets of data samples. Lower-
dimensional representations of data in feature subspaces are suc-
cessfully visualized by parallel coordinate plot, where we project
the data samples of correlated dimensions to one composite axis
through dimensionality reduction schemes. Several experimental
results of our data analysis together with discussions will be pro-
vided to assess the capability of our approach.
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1 INTRODUCTION

With the rapid proliferation of high-performance computing and
measurement facilities, the simulated/measured numerical datasets
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have been in common getting bigger and more complicated at an
accelerated pace. A larger number of samples with higher preci-
sion and more associated attributes would deserve being analyzed,
whereas it would become much harder for the data analysts to ex-
tract the important patterns due to their overwhelming structural
complexity. Indeed, pursuit of effective mechanisms that allow the
analysts to explore feature subspaces from the given dataset can be
thought of as a central research topic in the current visualization
and VAST communities [24, 31]. If relying too much on effective
enhancements in manual interventions, as seen in several conven-
tional approaches [24, 31], the associated results depend heavily on
the knowledge and skills of the data analysts.

This paper therefore builds upon biclustering techniques to come
up with a novel approach to extracting feature subspaces from
multivariate data [7, 17]. Unlike the conventional approaches,
highly-correlated dimensions are automatically grouped to form
subspaces, where we project the data samples of the correlated di-
mensions to one composite axis through dimensionality reduction
schemes. To achieve simultaneous clustering of highly-correlated
dimensions and data samples, we derive a novel asymmetric bi-
clustering method that combines spherical k-means clustering for
grouping highly-correlated dimensions [4, 3], together with ordi-
nary k-means clustering for identifying subsets of data samples. A
progressive style of visual exploration of subspaces, coupled with
graceful elimination of uncorrelated blocks of subspace, can lead
effectively to lower-dimensional representations of data in feature
subspaces, which are successfully visualized by parallel coordinate
plot (PCP) and its recent variants ameliorating intrinsic visual clut-
ter artifacts.

Figure 1 shows a screenshot of our system interface of coordi-
nated view, where a synthetic 12D dataset is being analyzed with
the proposed approach. After two noisy dimensions and a small
cluster of data samples have been identified and removed from the
original dataset, the remaining 10D data are visualized with clas-



sical PCP (Figure 1(a)). We assume 4 column by 7 data sample
block clusters, and delineate their dimensional correlations with the
clustered PCP (Figure 1(b)) and their statistics with block matrix
diagram (Figure 1(d)) where we can find another noisy dimension.
Shown in Figure 1(c) is the resulting contracted PCP. In Figure 1(e),
we are allowed to obtain an overview of the subspace search history.

The remainder of this paper is organized as follows. Section 2
provides a brief survey on multivariate data clustering and visual-
ization. Section 3 gives a key idea to make use of biclustering for
feature subspace exploration. Section 4 and Section 5 detail the
underlying biclustering method and the visualization framework,
respectively. Section 6 discusses effective usage guidelines of the
proposed approach by using the synthetic dataset and reports em-
pirical evaluation through the application to two practical datasets.
Section 7 concludes the paper and refers to future extensions.

2 RELATED WORK

This section provides a survey on relevant techniques for exploring
feature subspaces from multivariate data, including data clustering
and visual data mining.

2.1 Data Clustering

Classical clustering techniques such as k-means clustering provide
us with a fundamental means of grouping data samples into a spe-
cific number of clusters, for better understanding of the underly-
ing structure of the data [15]. While these techniques are effective
for finding a set of data samples that are close to each other in the
data domain, they do not offer any way to identify a set of highly-
correlated dimensions at the same time. Biclustering, also known
as co-clustering or two-mode clustering, is capable of solving this
problem in the sense that it performs a simultaneous clustering of
the rows (data samples) and columns (dimensions or axes) of a data
matrix consisting of multivariate data samples [7]. A lot of methods
have been proposed for biclustering and applied to data analyses in
a variety of fields such as bioinformatics, sociometrics, and archae-
ology (see [17] and references therein).

As one of the most popular methods of biclustering, we focus
on partitioning methods, which have been extensively studied un-
der the name of block modeling. The most fundamental approach
can be considered as a two-way generalization of the classical k-
means algorithm for both the rows and columns of a data matrix
(Section 4.3), and hence is interpreted as a probabilistic modeling
using the Gaussian distribution. In this view, an extension using the
Bayesian inference method has been proposed for finite discrete
variables and named as the stochastic block model [19]. Another
extension using the exponential family distribution proposed in [23]
can deal with diverse data types such as binary and non-negative
integers more appropriately by choosing Bernoulli and Poisson dis-
tributions for instance. However, these approaches do not help us
seek for highly-correlated subspaces and subsets of data samples
from the given multivariate data since they just symmetrically treat
the clusterings of rows and columns by sharing common mean val-
ues for each partitioned block.

Thus, in this paper, we present an extension of the conventional
block modeling that deals with the clusterings of rows and columns
asymmetrically, by employing the correlation coefficient as a simi-
larity measure between columns (i.e., dimensions). This is achieved
by introducing the spherical k-means clustering for grouping of
columns, which maximizes the sum of the correlation coefficient of
each dimension from the corresponding cluster centroid dimension
[4, 3] (Section 4.2). This biclustering method is more suitable for
common techniques of visualizing multivarite data such as PCPs
and scatterplot matrices, because conventional biclustering meth-
ods based on the symmetric applications of k-means clustering do
not identify highly-correlated dimensions in the given data. All the
above mentioned methods including ours assume that the numbers

of clusters are predefined both for rows and columns. However, sev-
eral approaches have been proposed that can estimate the numbers
of clusters from the given data, for example, by employing the in-
finite relational model based on the Bayesian nonparametrics [13].
It would be an interesting undertaking to generalize our method in
this direction.

2.2 Visualizing Multivariate Data

Developing visual analytics models for exploring feature subspaces
hidden behind the multivariate data has attracted more attention
from the visualization community. Two significant research direc-
tions, scalable data compression for hierarchical representation of
data samples and dimension management for rearranging dimen-
sions for better visualization have been investigated so far. For
the data compression, Fua et al. [6] proposed hierarchical PCPs
together with interactive tools for controlling the level of details
of the data, while Elmqvist and Fekete [5] conducted a survey on
guidelines for hierarchical data aggregation and provided us with a
useful insight into data abstraction. As for the dimension manage-
ment, Yang et al. [29] filtered out insignificant dimensions accord-
ing to their mutual similarities in the visualization of multivariate
data, and Peng et al. [21] improved this technique for reordering
dimensions by maximizing data correlation between each pair of
the neighboring dimensions. The idea has been further extended in
[10, 8, 32] by incorporating a pairwise correlation graph for visu-
alization purposes. Contracting multiple dimensions into a single
composite axis has been conducted in [18], where correlation was
incorporated for visualizing the global trends inherent of the data.

Multivariate data exploration has recently been tackled since the
aforementioned two research directions handle data samples and di-
mensions almost independently. Turkay et al. [25, 26] presented vi-
sual analysis models, which interactively project data samples and
subspaces onto screen space through multivariate statistical analy-
sis. Tatu et al. [24] introduced an algorithm for finding interest-
ing subspaces in the multivariate data by referring to the similar-
ity measure between a pair of subspaces. Furthermore, Yuan et
al. [31] aggressively incorporated human intervention in the data
exploration by visualizing distribution of data samples and correla-
tion among dimensions. Another interesting approach has recently
been developed by Yates et al. [30] where they employed glyph-
based scatterplot matrices for finding feature subspaces. Although
these approaches are effective, the results of the analysis heavily de-
pend on knowledge and observation skill of the users and thus may
fail to illuminate important feature subspaces. Our approach tries
to maximally support such data exploration by suggesting possi-
ble subspace decomposition of the given data subsets together with
correlation values of each extracted subspace, which allows us to
visually select significant feature subspaces with less effort.

For better visualizing data correlation between dimensions in our
approach, we employ PCP and its enhanced views as visual repre-
sentations of the multivariate data [9]. However, PCP often suf-
fers from visual clutter artifacts arising from overlaps among poly-
line plots especially with the increase in data complexity, which
has been alleviated so far by improving its rendering styles. Zhou
et al. [33] introduced edge bundling techniques to group highly-
correlated polyline samples, while McDonnell and Mueller [16] ap-
plied translucent rendering styles on those bundled polylines, and
Palmas et al. [20] employed density-based clustering for each di-
mension to provide an overview of bundled data. In this research,
we will deploy such PCP representations of multivariate data to vi-
sually understand the subspace partitioning obtained by the pro-
posed biclustering algorithm.

3 OVERVIEW OF VISUAL ANALYTIC FRAMEWORK

This section shows the visualization framework of the present ap-
proach. Data analysts still find it difficult to analyze multivariate



Figure 2: Visual analytic framework of correlated subspace mining.

data since their characteristics are implicitly smoothed out as the
dimension increases, and visual clutter occurs when projecting the
data to the limited screen space. Thus, they aim to reduce the num-
bers of dimensions and data samples in order to extract global pat-
terns through exploring significant correlation in the multivariate
data. To achieve this, we develop a block modeling framework
where each block represents a group of highly-correlated dimen-
sions and data samples in the dataset, so that we can provide an
efficient guide to the data analysts by allowing them to systemati-
cally reduce poorly-correlated contents.

Figure 2 shows the overall framework of the present approach.
We provide two main functions, including simultaneous clustering
of highly-correlated dimensions and data samples and data explo-
ration for sophisticated data analysis. Our approach begins with
an automatic clustering step, where the highly-correlated dimen-
sions and data samples are simultaneously grouped through the pro-
posed biclustering algorithm (Step 1). By referring to the objective
function values, analysts can evaluate the goodness of the current
clustering results with colored blocks, where the red color indicates
poorly-correlated data samples and green color represents highly-
correlated ones based on the HSV model. Thanks to this color as-
signment scheme, analysts can selectively delete poorly-correlated
dimensions (Step 2), which is followed by eliminating a limited
number of outlier data samples (Step 3). Note that user interven-
tion is involved here in the second and third steps, because analysts
can intentionally generate a highly-correlated subspace and remove
outlier data samples for further exploration iteratively until reach-
ing a satisfactory result. The present feature subspace extraction
is accomplished by incorporating the biclustering algorithm (Sec-
tion 4), while the data exploration is composed of several views
together with the history tree (Section 5).

4 BICLUSTERING METHOD

In this section, we describe the biclustering method, which clus-
ters dimensions and data samples simultaneously. As the distance
measure for the clustering of dimensions, we focus on the corre-
lation coefficient, which is suitable for PCP, and is in fact applied
to the ordering of dimensions [28, 21]. More specifically, we use
the clustering method, called spherical k-means, which has the sum
of the correlations from the cluster center vectors as the objective
function, and conducts k-means clustering on a high-dimensional
unit sphere [4, 3]. After describing the objective function of the
classical k-means algorithm (Section 4.1), we introduce an exten-
sion of the spherical k-means that takes into account negative cor-
relation as well as positive correlation (Section 4.2). Then, we
describe a fundamental biclustering algorithm based on the block
model (Section 4.3). Finally, incorporating the same constraints as
the spherical k-means, we extend the biclustering algorithm so as to
deal with the correlation coefficient as the objective function (Sec-
tion 4.4). We develop an optimization method for the block model
which maintains the spherical constraints during the optimization to

(a) (b)

Figure 3: (a) Data matrix, and (b) schematic representation of the
block model for K = 4 and L = 3.

Figure 4: A concept illustration of spherical k-means.

guarantee the monotonic improvements of the objective function.

4.1 K-Means Algorithm

Given n samples in d-dimensional space, {r1, · · · ,rn}, ri =

(xi1, · · · ,xid)∈Rd , the k-means clustering algorithm with K clusters
iteratively updates the cluster mean vectors {θk = (θk1, · · · ,θkd) ∈

Rd}K
k=1 and cluster labels {κ(i) ∈ {1,2, · · · ,K}}n

i=1, which is guar-
anteed to converge to a local minimum of the following objective
function [15],

n

∑
i=1

||ri −θκ(i)||
2 =

n

∑
i=1

d

∑
j=1

(xi j −θκ(i) j)
2. (1)

4.2 Spherical K-Means Algorithm

Let us consider clustering of dimensions c1, · · · ,cd where c j =
(x1 j, · · · ,xn j) ∈ Rn. Normalizing each dimension, we define c̃ j =

(x̃1 j, · · · , x̃n j) ∈ Sn−1 (i.e. c̃ j ∈ Rn and ||c̃ j|| = 1), where

x̃i j =
xi j − x̄ j

√

∑n
i=1(xi j − x̄ j)2

,

and x̄ j = 1
n ∑n

i=1 xi j is the average of the jth dimension for j =
1, · · · ,d. Figure 3(a) summarizes the notation of the data matrix.

The spherical k-means clustering uses the following objective
function,

d

∑
j=1

s( j)c̃ j ·µλ ( j), (2)

where · denotes the inner product, µl ∈ Sn−1 is the lth mean vector
of dimensions, and λ ( j) ∈ {1,2, · · · ,L} is the cluster label repre-
senting which cluster the jth dimension belongs to. Here we have
also introduced s( j) ∈ {−1,+1} which shows that µλ ( j) is posi-

tively (negatively) correlated with c̃ j if s( j) = +1 (s( j) =−1) while
the original spherical k-means deals only with the positive correla-
tion, i.e., s( j) = +1 for all j [4, 3].

The objective function (2) is equivalent to

d

∑
j=1

∣

∣

∣
c̃ j ·µλ ( j)

∣

∣

∣
,



when the signs {s( j)} are optimized. Since the mean vector µl

satisfies µl · 1 = 0, where 1 is the vector of all 1’s, during the op-
timization, the objective function is the sum of the absolute values
of the correlation coefficients between the dimensions {c j} and the
assigned mean vectors {µλ ( j)}.

The spherical k-means can be viewed as the k-means algorithm
on the unit hypersphere, as illustrated schematically in Figure 4
for n = 2 and d = 7. Specifically, the spherical k-means algo-
rithm, initializing the cluster labels {λ ( j)}, iterates the following
two steps, which monotonically increases the objective function (2),
and hence is guaranteed to converge to a local maximum:
Update step: For l = 1, · · · ,L,

µl =
∑ j:λ ( j)=l s( j)c̃ j

∥

∥

∥∑ j:λ ( j)=l s( j)c̃ j

∥

∥

∥

,

where the numerator sums the (signed) dimensions that are assigned
to the lth cluster, and the denominator normalizes µl .
Assignment step: For j = 1, · · · ,d,

λ ( j) = argmax
1≤l≤L

∣

∣c̃ j ·µl

∣

∣ , (3)

and set s( j) to the sign of c̃ j ·µλ ( j).

Note that the maximization of the above objective function is
equivalent to the minimization of

d

∑
j=1

‖c̃ j − s( j)µλ ( j)‖
2 = 2d −2

d

∑
j=1

s( j)c̃ j ·µλ ( j),

which is the objective function of the original k-means algorithm
in (1) applied to the columns of the data matrix instead of the rows
when s( j) = 1 for all j and ||µl || = 1 for l = 1, · · · ,L. In the update
step, the mean vector is normalized, so as to have the norm 1, which
is the main difference of the spherical k-means from the original k-
means algorithm.

4.3 Biclustering

We turn to the biclustering algorithm which simultaneously clus-
ters dimensions and data samples. Basic biclustering methods are
based on the block model [7, 17], where the data matrix of the size
n×d is divided into K×L submatrices (blocks), each of which has
the size nk ×dl (k = 1, · · · ,K and l = 1, · · · ,L). Here nk is the num-
ber of data samples assigned to the kth cluster of samples, and dl

is the number of dimensions assigned to the lth cluster of dimen-
sions. Hence, ∑K

k=1 nk = n and ∑L
l=1 dl = d hold. The biclustering

algorithm defines as the objective function, the following squared
error,

n

∑
i=1

d

∑
j=1

(xi j −νκ(i),λ ( j))
2,

which is minimized with respect to the mean value of each block
νk,l ∈ R (k = 1, · · · ,K, l = 1, · · · ,L), and sample and dimension
cluster assignments κ(i) ∈ {1, · · · ,K} (i = 1, · · · ,n) and λ ( j) ∈
{1, · · · ,L} ( j = 1, · · · ,d). Figure 3(b) shows a schematic represen-
tation of the block model where the rows and columns of the data
matrix are permuted according to the row and column cluster as-
signments.

Initializing the sample and dimension cluster labels, {κ(i)} and
{λ ( j)}, the biclustering algorithm iterates the following steps:
Update step: For k = 1, · · · ,K and l = 1, · · · ,L,

νk,l =
1

nkdl
∑

i:κ(i)=k

∑
j:λ ( j)=l

xi j,

which is the mean of the elements of the data matrix assigned to the
klth block.
Assignment step: For i = 1, · · · ,n,

κ(i) = argmin
1≤k≤K

d

∑
j=1

(xi j −νk,λ ( j))
2,

and for j = 1, · · · ,d,

λ ( j) = argmin
1≤l≤L

n

∑
i=1

(xi j −νκ(i),l)
2.

This biclustering algorithm can be considered as applying k-
means algorithms to samples and dimensions, where for samples,

the mean vector of the kth cluster is θk = (νk,λ (1), · · · ,νk,λ (d))∈Rd ,

and for dimensions, the mean vector of the lth cluster is µl =
(νκ(1),l , · · · ,νκ(n),l) ∈ Rn.

4.4 Spherical K-Means Based Biclustering

4.4.1 Spherical Constraints

The biclustering algorithm in Section 4.3 uses k-means clustering
both for clustering of samples and clustering of dimensions. Hence,
it does not take into account the correlations between dimensions of
each cluster, which are directly dealt with by the spherical k-means
presented in Section 4.2. To incorporate the correlation between
dimensions, we propose to introduce the constraints on the block
mean values, for l = 1, · · · ,L and k = 1, · · · ,K,

νk,l =

1
nk

ν̄k,l
√

∑K
k=1

(ν̄k,l)2

nk

, (4)

for ν̄k,l ∈ R satisfying ∑K
k=1 ν̄k,l = 0. Hereafter, we consider ν̄k,l as

a parameter instead of the block mean value νk,l . Its update rule will
be given in (7) of Section 4.4.2. We see that under the constraint (4),
the block mean values satisfy the constraints for the mean vectors
of the spherical k-means, i.e.,

‖µl‖
2 =

K

∑
k=1

nkν2
k,l = 1,

for l = 1, · · · ,L, where µl = (νκ(1),l , · · · ,νκ(n),l) is the lth mean vec-

tor of dimensions. Furthermore, µl · 1 = ∑K
k=1 nkνk = 0 holds for

l = 1, · · · ,L.
Thus, we propose the biclustering algorithm that minimizes the

following objective function subject to the constraints in (4),

D =
d

∑
j=1

‖c̃ j − s( j)µλ ( j)‖
2 = 2d −2

d

∑
j=1

s( j)c̃ j ·µλ ( j), (5)

Note that in (4), the block mean value νk,l depends on the sample
cluster label κ(i) (i = 1, · · · ,n) through nk.

The normalized error for the klth block is then defined by

Ek,l =
1

nkdl
∑

i:κ(i)=k

∑
j:λ ( j)=l

{x̃i j − s( j)νk,l}
2, (6)

which is used for the block matrix diagram, as will be described in
Section 5.2. The total error D in (5) and the normalized block errors
are related by D = ∑K

k=1 ∑L
l=1 nkdlEk,l .

The spherical k-means described in Section 4.2 has L(n−2) de-
grees of freedom. This flexibility may cause severe overfitting to
the data matrix. The block model with the spherical constraints,
reducing the degrees of freedom to L(K −2), can control the flexi-
bility of the method by choosing K.



4.4.2 Derivation of the Algorithm

We alternately optimize the objective function (5) with respect to
one of the variables while other variables are fixed. This is iter-
ated until convergence to obtain a local minimum of the objective
function. Note that the convergence value of the objective function
(5) is meaningful only when compared among multiple runs with
different initializations.

For fixed {κ(i)} and {ν̄k,l}, the objective function (5) is ex-
pressed as a function of λ ( j) and s( j) by −2s( j)c̃ j · µλ ( j) up to

constant terms independent of λ ( j) and s( j). Hence, the assign-
ment step (3) of the spherical k-means can be directly used to opti-
mize λ ( j) and s( j).

For fixed {s( j)}, {λ ( j)}, and {ν̄k,l}, all the block mean values
depend on the sample cluster label κ(i) through nk and the nor-
malizing constant in (4). Hence, to optimize the ith sample label
κ(i) while other sample labels are fixed, we recompute all the block
mean values by (4) for κ(i) = 1, · · · ,K, compare their objective val-
ues by (5), and choose the label that attains the minimum.

For fixed {κ(i)}, {λ ( j)}, and {s( j)}, the Cauchy-Schwarz in-
equality yields that the optimal block mean value that minimizes
the objective function (5) is given by

ν̄k,l = ∑
i:κ(i)=k

∑
j:λ ( j)=l

s( j)x̃i j. (7)

4.4.3 Algorithm

The proposed algorithm is summarized in Algorithm 1. As for the
initialization, we can optionally use the k-means++ method [2] to
generate initial sample labels {κ(i)} and dimension labels {λ ( j)}
since the objective function (5) is the squared distance both for each
sample and dimension.

Algorithm 1 Spherically constrained biclustering

Input: Data samples {xi}
n
i=1. Number of sample clusters K.

Number of dimension clusters L.
Output: Sample cluster labels {κ(i) ∈ {1,2, · · · ,K}}n

i=1.

Dimension cluster labels {λ ( j) ∈ {1,2, · · · ,L}}d
j=1.

Initialize κ(i) for i = 1,2, · · · ,n and λ ( j) for j = 1,2, · · · ,d.
repeat

Update ν̄k,l for k = 1, · · · ,K and l = 1, · · · ,L by (7).
For j = 1, · · · ,d, assign the cluster label λ ( j) by (3), and set
s( j) to the sign of the correlation of the maximum.
For i = 1, · · · ,n, recompute block mean values {νk,l} for
κ(i) = 1, · · · ,K by (4), and set κ(i) to the sample label min-
imizing the objective function (5).

until Convergence

5 VISUALIZING HIGHLY-CORRELATED SUBSPACES

Once the biclustered dimensions and data samples have been gen-
erated, we are ready to describe the present visualization frame-
work. The coordinated view in Figure 1 consists of the classical
PCP, clustered PCP, contracted PCP, and block matrix diagram, to
effectively illustrate how the multivariate data is decomposed into
subspaces through the biclustering techniques. In addition, it offers
a history tree that effectively restores any previous transaction.

5.1 Enhanced Parallel Coordinate Plots

Classical PCP effectively presents data correlation between two ad-
jacent axes, as shown in Figure 1(a). To further enhance the read-
ability of the clustered dimensions in our system, we devised the
clustered PCP in a way that we can group parallel axes accord-
ing to the clustering result while inserting additional space to place

thick separators between the clusters by employing Gestalt princi-
ples, as shown in Figure 1(b). Note that each parallel axis in this
clustered PCP is represented by the orientation of a thin triangle
which allows us to discriminate between the normal axes (i.e., those
with s( j) = +1) and the inverted ones (s( j) = −1) (see Figure 4
also). For increasing the readability of the global trends inherent in
the data, we also introduced the contracted PCP, where we project
multiple axes in each axis cluster onto one composite axis, as shown
in Figure 1(c). Several projection techniques including spherical k-
means [3], PCA [12], and LDA [14] have been implemented in our
system, so that we can effectively infer relationships between the
clusters of axes. We also employed edge-bundled cluster render-
ing and strip rendering styles in our system in order to improve the
visual readability of the data [16, 20, 33].

5.2 Block Matrix Diagram

Figure 1(d) shows our block matrix diagram for the biclustered
data, which also serves as an interface for exploring meaningful
subspaces in the data. Vertical color bars (in red, for example) at-
tached to the left side of the diagram show the correspondence with
the colors assigned to the data clusters in PCP representations, and
the integer value next to each bar shows the number of data samples
in the corresponding cluster. The value in each small block shows
the normalized error of the corresponding subsets of data samples
in the feature subspace, which is obtained by (6). We incorporated a
color legend of popular heat map representation that ranges in hue
from red to green according to the degree of data correlation. In
our implementation, the blocks with low correlation are automat-
ically sorted to the right bottom corner in the diagram. Users are
also allowed to drag a set of blocks to reorganize the block matrix
diagram itself, and delete a row or column of feature subspaces to
further investigate the correlation in the remaining data. Note that
the sequence of columns (i.e., subset of dimensions) in the block
matrix diagram is matched with that of composite axes in the afore-
mentioned contracted PCP view.

5.3 History Tree Visualization

To allow users to arbitrarily retrieve their previous transactions, we
introduced a history tree representation to record the exploration
history, as shown in Figure 1(e). Here, each tree node is labeled
with a thumbnail image of the corresponding block matrix diagram
together with their matrix size and objective function value for bet-
ter understanding the history. Users are allowed to estimate the
goodness of biclustering results by referring to the objective func-
tion value in (5), so that they can navigate the history tree in a trial
and error manner.

6 RESULTS AND DISCUSSIONS

In this section, we present experimental results of the proposed
approach on synthetic and real-world datasets, together with dis-
cussions of the present approach. Our prototype system has been
implemented on a desktop PC with Quad-Core Intel Xeon CPUs
(3.7GHz, 10MB cache) and 12GB RAM, and the source code was
written in C++ using GSL for numerical computation, OpenGL for
graphics, and GLUI library for the user interface.

6.1 Synthetic Data

We first demonstrate our experimental study on a 750 records of
12D synthetic data employed in [24]. This multivariate data in-
cludes four 3D clusters with 10% noise and two 6D clusters with-
out noise, while the data samples are uniformly distributed in other
dimensions. Figure 5(a) shows an initial subspace decomposition
of the data obtained through the biclustering process. Note that our
prototype system automatically conducts three trials of the biclus-
tering process and takes the best one as the result. Here, we set
the initial numbers of data and dimension clusters to K = 9 and



(a) K = 9 and L = 6 (b) K = 9 and L = 5 (c) K = 9 and L = 4

(d) K = 8 and L = 4 (e) K = 7 and L = 3 (f) K = 4 and L = 3

Figure 5: System screenshots for exploring subspaces in a 12-dimensional synthetic data.

(a) K = 9 and L = 9 (b) K = 9 and L = 7

(c) K = 9 and L = 5 (d) K = 3 and L = 2

Figure 6: Experiments on the USDA national nutrient data.



L = 6, which are simply determined by half number of the orig-
inal dimensions and the logarithm of data samples, respectively.
Thus, the isolated dimensions generated by the algorithm can be
considered as poorly-correlated, so that analysts can delete them
to maintain the correlation of the reduced dataset. Our guideline
here is to eliminate subspaces having uncorrelated and often iso-
lated dimensions first, and then data samples by cutting off rows
and columns of the block matrix diagram, until we can fully iden-
tify correlation among dimensions and data samples in the remain-
ing subspaces. Figures 5(a) and (b) show that the selected columns
(i.e., clusters of isolated dimensions) were interactively eliminated.
Then, we were about to arbitrarily remove all the small uncorrelated
data samples (23 only as shown in Figures 5(c) and (d)). Figure 1
presents an intermediate screenshot of our prototype interface af-
ter the above processes, where we finally obtained most correlated
subspaces through merging similar clusters into ones (Figures 5(e)
and (f)).

6.2 USDA National Nutrient Data

We employed the USDA food composition dataset [1] as the first
real-world example, which has been also employed in the experi-
ments conducted by Tatu et al. [24] and Yuan et al. [31]. In this
dataset, each data sample corresponds to a specific food while each
dimension represents a kind of nutrient composed in each food. Af-
ter having deleted data samples having missing values and selected
interpretable dimensions as a preprocessing by following [24, 31],
we finally employed 722 records of 18 dimensions as the input.

We conducted biclustering analysis with the aforementioned ini-
tial setting (K = 9 and L = 9) in our experiment. Dimensions la-
belled as Vitamin B12, Vitamin A, Sodium, and Vitamin E, which
are not highly correlated with the remaining dimensions, were first
deleted from the block matrix diagram to preserve the correlation
in the data (Figure 6(a)). Following the guideline we discussed in
Section 6.1, we deleted isolated dimensions step by step to extract
a new set of feature subspaces, as shown in Figures 6(b) and (c).
Removing additional small data outliers (Figure 6(b)) finally re-
sulted in the small set of correlated feature subspaces (Figure 6(d)).
Throughout our experiments with 573 records left, we can observe
that a pair of Energy and Water is the most strongly correlated while
a pair of Protein and Vitamin B6 is also highly correlated.

Comparison with the case study by Tatu et al. [24] shows that our
results also support their claim that Protein is dominant within a set
of dimensions and strongly influences on the results of subspace
clustering. Yuan et al. [31] also stated Energy, Lipid, and Water are
highly correlated after removing unnecessary dimensions and data
samples manually in their system, which was also supported by our
results where we could clearly find three data clusters as shown
in Figure 6(d). Meanwhile, we could further extract the second
highly-correlated subspace spanned by Protein and Vitamin B6, and
identify relationships between the two subspaces in our contracted
PCP representation.

6.3 Blazar Data

Our second practical case study targets at diurnally-measured light
of blazars being emanated from active galactic nuclei (supermas-
sive black holes) [27]. The dataset of interest contains 12 blazars
whose properties are commonly characterized with 8 parameters,
that is, total intensity (I); two variables for polarization (Q and
U); corrected variables for polarization (Q/I and U/I); degree of

polarization (PD =
√

(Q/I)2 +(U/I)2); angle of polarization
(PA = 0.5arctan(U/Q)); and color index (V −J). Note that each of
the parameters is accompanied with its own measurement deviation,
and the total dataset contains 1,285 samples in 17D, indexed with
observational day (JD) [11]. The challenging task here is to visu-
ally explore correlations among these parameters, aiming at blazar

(a)

(b) (c)

Figure 7: Analyzing blazar dataset of 1,285 samples in 17D. (a) Plot-
ting original data. (b) Plotting final data clustered with 3 sample-by-2
axis clusters. (c) Plotting final data (strip-rendered view).

classification and behavior abnormity isolation based primarily on
such polarized light observations.

Figure 7(a) plots the original dataset. Starting with the initial set-
ting of K = 6 and L = 6, iterative axis contractions and elimination
of outlier data samples (finally reduced to 1,093) made the dataset
manifest its own correlation structure in a 3 sample-by-2 axis block
cluster, as shown in Figure 7(b). Besides, the clustered structure
of the final data plot can be enhanced with a strip-rendered view in
Figure 7(c) [20]. It is not surprising that those deviations and tem-
poral index have been eliminated as uncorrelated properties. Also,
it can be observed that polarization variables (Q/I and U/I) cor-
rected with total intensity (I) have strong correlations with their
originals (Q and U), respectively. This suggests that the temporal
behavior of blazars is governed not by the variations in unpolarized
emission, but that by polarized emission. In addition, it was con-
trary to the expectation from astrophysics that color index (V − J)
did not remain as a key blazar discriminator.

6.4 Discussions

In the previous subsections, we demonstrated several experimental
results of our prototype system. We successfully retrieved highly-
correlated subspaces of several experimental data by following the
proposed applicable guideline, and the results can be reproduced
through different trials. Moreover, in a reduced subspace, trends
in the data samples are further clarified due to the suppression of
visual distractions. Thus, our approach not only allows us to inves-
tigate data samples individually in different clustered dimensions,
but also explore the behaviors between clusters simultaneously. The
aforementioned benefit provides the users with a different impact
when analyzing meaningful data samples, where they can compose
the overall knowledge of the dataset from possible local clusters
within a subspace as well as global clusters between the subspaces.
A limitation of the present approach is that we cannot apply it
for analyzing uncorrelated dataset, such as datasets for classifica-
tion purposes. Moreover, although we have employed k-means++
method for initializing sample labels, we cannot always reach the
best objective value without a few trial and error analyses. For the
conventional block model, extensions based on Bayesian estima-
tion have been proposed, which offer a way to select the numbers
of clusters, K and L [23, 22]. It is an important undertaking to de-
rive such an extension of the spherically constrained block model.



7 CONCLUSION AND FUTURE WORK

We presented a novel data analysis approach based on a reformu-
lated biclustering method that employs correlation coefficients as
a similarity measure of dimensions. Simultaneously-clustered data
samples and dimensions are visualized by enhanced PCPs together
with a block matrix diagram and its history record. Through exper-
iments on a synthetic and two real datasets, we demonstrated that
our approach enables efficient interactive handling of the extracted
subspaces.

Our future directions include the estimation of the numbers of
row and column clusters only from the given data and the gener-
alization of the block structure to the nested clusterings (i.e., par-
titionings), which were implemented for the ordinary block model
in [13, 22]. Although our current system can already extract nested
clusters by preserving the clusterings of the removed blocks of rows
and columns, this sequential partitionings would be improved by
the direct modeling of nested partitionings. Another issue to be
addressed is more appropriate treatment of time-series data.
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