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Abstract: In this paper, we propose a method for automatically directing viewers’ visual attention to important regions of
images and videos in low-level vision. Inspired by the modern model of visual attention, the importance map
of an input scene is automatically calculated by the combination of low-level features such as intensity and
color, which are extracted using spatial filters in different spatial frequencies, together with a set of temporal
features extracted using a temporal filter in case of dynamic scenes. A variable-kernel-convolution based on
the importance map is then performed on the input scene, in order to makesemantic depth of field effects in
a way that important regions remain focused while others are blurred. The pipeline of our method is efficient
enough to be executed in real time on modern low-end machines, and the associated experiment demonstrates
that the proposed system can be complementary to the human visual system.

1 INTRODUCTION

We live in an information world that our sense organs
receive tremendous information from surroundings,
where 80% of which is visual information and can be
up to 108 bits per second at the optic nerve. Although
human visual system cannot fully process all of these
information (Tsotsos, 1990), it can selectively allo-
cates its hardware resources to focus on important re-
gions, which made it possible to process the visual
information efficiently by discontinuous fixations (Itti
and Koch, 2001). Thus, the problem of how to direct
viewers’ attention has become a big issue when gen-
erating visual materials such as photos and videos.

For direct the human visual attention, the depth of
field (DOF) effect is often employed in the art of film
and photograph production. This type of effect is in-
troduced by adjusting the properties of camera lens,
so that objects with specified-distance from the cam-
era can be displayed sharply while others are blurred
intentionally. This technique is effective and can be
accepted naturally by audience, because the DOF is
processed by an intrinsic part of the human visual sys-
tem. Previous study (Kosara et al., 2001) explored
this type of effect for the use in computer visualiza-

tion, named Semantic Depth of Field (SDOF), which
blurs the images of the objects depend on the user-
specific relevance value rather than the distance from
the camera. Traditional methods for guiding human
visual attention assume specific regions to be empha-
sized. Under some circumstances, however, we do
not know where is important in the given images, and
even we cannot predict it, for example, as seen in
general-purpose remote monitoring systems.

In this paper, we present a method for enhancing
the salient image regions that are different from sur-
roundings in intensity or colour in real time, by fully
taking advantage of the SDOF formulation. Here,
the salient regions correspond to the conspicuous spa-
tial features in images and spatiotemporal features
in videos, which will be extracted through our low-
level vision. Our run time algorithm has been ac-
complished by introducing the definition ofimpor-
tance map, whose scalar value distribution topograph-
ically represents the perceptual importance of each
pixel of the input visual scene. Based on this map,
the essential regions of the input scene will remain fo-
cused while others will be blurred to generate seman-
tic depth of field effects, as shown in Figure 1. Our
results through eye-tracking experiments suggest that
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Figure 1: Results of our method. (a) Input scene through a web camera. (b) Semantic depth of field effects generated by our
algorithm. (c) The corresponding importance maps. The top row corresponds to a case of a static scene, where no specific
object are not visually focused. The bottom row corresponds to a casea dynamic scene where the person is about to open the
door. Note here the moving objects have been intentionally focus to direct our visual attention using the depth of field effects.

the method can reduce reaction times and increase fix-
ation times on important regions in practice, and can
help us overcome some congenital shortages of the
human visual system such as change blindness phe-
nomenon (see details in Section 4). Our implementa-
tion shows that the overall pipeline is computationally
efficient enough to run in real time, thus being par-
ticularly suitable for applications that need run-time
processing.

The remainder of this paper is organized as fol-
lows: First, Section 2 provides a brief survey on re-
lated work. Section 3 then shows the overall pipeline
of our method. Section 4 introduces the implementa-
tion results and psychophysical validations by exper-
iments. Finally, Section 5 concludes this paper.

2 RELATED WORK

In this section, we introduce related work on the com-
putational models of visual attention to explain how
the human visual selective mechanism works, and
compare the conventional models ofsaliency maps
and theimportance map we will introduce. Previous
studies on the SDOF will also be discussed.

2.1 Visual Attention Modelling

Although the performance of our visual system will
be affected in a top-down manner by circumstances
(e.g., task-depend), the low-level vision still plays an
crucial role in our visual information processing and

its corresponding bottom-up architecture has been
proposed in (Koch and Ullman, 1985), inspired by
the biological model of human visual system. This
bottom-up architecture allows us to explain why some
specific objects, for example, red apple among green
ones, will pop-out from a scene, and further extended
to the computational model of visual attention called
saliency maps formulated by Itti et al. (Itti et al.,
1998), where the centre-surround mechanism is used
to extract low-level features such as colour, intensity,
and orientation that are different from surrounding ar-
eas.

The saliency map is a one-channel scalar image
that topographically represents the visual saliency of
a corresponding visual scene. Based on this saliency
map, a selection process deploys the gaze sequence on
the visual scene by accessing to the corresponding 2D
topographic scalar field using awinner-takes-all com-
petition mechanism. In order to analyze video materi-
als, Itti et al. extended their model to dynamic scenes
using the Bayesian theory (Itti and Baldi, 2009).

In recent years, several purely computational
models of saliency map, which are no longer based
on biological principles, were also proposed. In these
models, image processing methods were employed to
estimate the saliency of each pixel in a given image.
The basic ideas behind these methods are to calculate
the centre-surround features (Ma and Zhang, 2003;
Achanta et al., 2009), to maximize the mutual infor-
mation of centre-surround features (Bruce and Tsot-
sos, 2007; Gao and Vasconcelos, 2007; Zhang et al.,
2008), and to analyze frequency domain of the input
image (Hou and Zhang, 2007).
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Figure 2: Comparison of the saliency maps in previous methods and the importance maps using our method. (a) The original
image. Saliency maps using the method of (b) Itti et al. (Itti et al., 1998),(c) Ma and Zhang (Ma and Zhang, 2003), (d) Harel
et al. (Harel et al., 2006), (e) Hou and Zhang (Hou and Zhang, 2007), and (f) Achanta et al. (Achanta et al., 2009). (g) The
importance map using our method. The images (b)-(f) are provided courtesy of Achanta et al. (Achanta et al., 2009).

2.1.1 Problems with saliency maps

Previous researches explored applications of the
saliency map in image region segmentation, object
detection, and robot vision simulation. However, the
low-resolution output and heavy computational com-
plexity of the saliency map still remain as crucial lim-
itations for a wider utilization of the saliency map.

The reason why the most models of the saliency
map produce a low-resolution output is that the
saliency map can be considered as a low-resolution
abstract of the input scene (Koch and Ullman, 1985).
To extract centre-surround features in different fre-
quency domains, downsampling approach has been
employed. The reason for the second issue, i.e., heavy
computational complexity, is that some of the models
employed a non-linear normalization process based
on a biological approach (Itti et al., 1998), a graph-
based approach (Harel et al., 2006), etc.

2.1.2 Saliency maps vs. importance maps

In this paper, we propose the definition of animpor-
tance map in a hope to solve these two problems.
The importance map is a scalar value image that topo-
graphically represents the perceptual importance of a
visual scene. Because the ultimate goal of the impor-
tance map is to model the visual property of a given
visual scene, we argue that the resolution of the im-
portance map should be the same as that of the input
image, and this can be accomplished by changing the
filter size rather than the input image size (see details
in Section 3.1). To reduce computational complexity,
we simplified the non-linear normalization process to
a linear one (see details in Section 3.2).

Another property of the importance map is that, its
scalar value distribution of the importance map should
be more flexible than that of the saliency map. This
is because even objects that do not pop-out in a visual

scene may also hold a high importance value (see de-
tails in Section 3.2). Figure 2 shows the implementa-
tion results of the saliency maps in previous methods
and the importance map obtained using our method.

2.2 Semantic Depth of Field

Semantic depth of field (SDOF) proposed by Kosara
et al. (Kosara et al., 2001) is a kind of Focus and Con-
text (F+C) information visualization technique that
allows us to investigate a specific local feature of the
given data while identifying its position with respect
to the global overview. The basic idea to assign a rele-
vance value to every object in a visual scene first, and
then blur each of them by different levels of Gaus-
sian filters according on the corresponding relevance
value. Furthermore, Kosara et al. studied the prop-
erties of the SDOF (Kosara et al., 2002b), explored
its use in applications (Kosara et al., 2002a), and
designed user-interactive experiments (Kosara et al.,
2002b) to find that the SDOF can quickly and effec-
tively guide viewer’s attention.

3 PROPOSED METHOD

In this section, we describe our proposed method,
which mainly consists of three steps. First, we extract
low-level features in image intensity and colour from
the input scene, together with motion feature in case
of the dynamic scene. These features are then linearly
normalized and combined into a single importance
map. In addition, since regions that do not pop-out
still may be important in perception, the histogram of
importance map is adjusted by a sigmoid function to
give more dynamic range according to the importance
values in the map. Finally, a convolution with variable
Gaussian kernels, whose coefficients change depend-



Figure 3: Plots of the DoE function withτ = 0.5.

ing on the importance of the corresponding pixel, is
performed on the input image.

3.1 Low-level Feature Extraction

By referring to the RGB colour components of each
pixel (i.e., red (r), green (g), and blue (b)), we cal-
culate the intensity contrast (I), red-green (RG) and
blue-yellow (BY ) double opponent channels as:

I =
1
3
(r+g+b), (1)

RG = r−g, and (2)

BY = b−
1
2
((r+g)−|r−g|) (3)

To extract the centre-surround features, we use a Dif-
ference of Gaussians (DoG) filter, which models the
response of neurons in Lateral Geniculate Nucleus
(LGN) at the early stages of the human visual system.
Its kernel has the following form:

DoG(x,y;σ) =
exp

(

− x2+y2

2σ2

)

σ2 −
exp

(

− x2+y2

2(2σ)2
)

(2σ)2 (4)

To extract features of different spatial frequencies,
we adjust the window size of the DoG filter without
downsampling the input image, thus the filtered re-
sults retain the same resolution as the input image. We
chooseσ ∈

{

21
,22

,23
,24

, ...,2i
}

(pixels) for the win-
dow size, and the number ofi can be changed depend-
ing on the input image resolution, because a higher
resolution image may need a larger window size. Em-
pirically, we choosei = 5 in our implementation.

Let Input(c) denote one of the three channels
(c ∈ {I,RG,BY}), i denote the scale of the DoG fil-
ter, and∗ denote the convolution operator. We derive
3× i spatial feature mapsF s(c, i):

F s(c, i) = Input(c)∗DoG(σi). (5)

For videos, we use a difference of Exponential-
like temporal filter (Zhang et al., 2009) to extract mo-
tion features, which is given by (Figure 3)

DoE(t;τ) = E(t;2τ)−E(t;τ), (6)

where
E(t;τ) =

τ
1+ τ

· (1+ τ)t
. (7)

Figure 4: Plot ofS(x) with m = 0.3.

Here,t ∈ (−∞,0] is the frame number relative to the
current frame (i.e.,t = 0 corresponds to the current
frame), andτ is the shape parameter. A bigger value
τ means that the extracted motion features will re-
ceive more influences from the immediate neighbor
frame, but not the distant past, while the condition
τ ∈ [0.1,1.0] works well in our implementation. Ap-
plying this filter toF s(c, i) in Eq. (5), we derive an-
other set of 3× i temporal feature mapsF t(c, i) for
the current frame as:

F t(c, i) = F s(c, i)∗DoE(0;τ). (8)

3.2 Importance Maps

As we described above, the purpose of computing im-
portance maps is to evaluate the perceptual impor-
tance of every pixel in the input scene. Since distinc-
tive features should be more important than common
ones (Zhang et al., 2008), we normalize the aforemen-
tioned feature maps by its self-average, and then lin-
early combined the results into one single map. For
static images, the outputI′ is obtained as:

I′ = ∑ F s(c, i)
avg(F s(c, i))

. (9)

For video inputs, with extra motion feature responses,
I′ is reformulated as:

I′ = ∑ F s(c, i)
avg(F s(c, i))

+ k ·
F t(c, i)

avg(F t(c, i))
, (10)

wherek is a weight value that determines the propor-
tion of the motion features inI′. This value can be
adjusted by circumstances.

We then normalizeI′ into the range[0,1], and ad-
just the histogram ofI′ using a fourth-order sigmoid
interpolation polynomial (Figure 4) to remap every
pixel x in I′ to a new valueS(x) as follows:

S(x) =
1
d
(ax2+bx3+ cx4), (11)

where

a =−1+4m2−3m3
,b = 2−4m+2m3

,

c =−1+3m−2m2
, andd =−1+2m2−m3

. (12)



Here,x ∈ [0,1], S(x) ∈ [0,1]. m is the threshold value
that satisfiesS(m) = m, from which we enhance the
dynamic range of the importance values. Empirically
we choose half the average ofI′ as the threshold in our
implementation. This transformation let us increase
the importance values abovem while suppressing the
values belowm, which exaggerates the contrast ofI′

and results in a more clearly enhanced output. Fig-
ure 5 shows the final importance mapI obtained by
applying this adjustment.

3.3 Applying Depth of Field Effects

The last step of the method is to reconstruct ev-
ery pixel of the input scene using a variable-kernel-
convolution to accomplish the final DOF effects. The
kernel we used is a Gaussian function withσx,y:

G(x,y;σx,y) =
1

2πσ2
x,y

·exp
(

−
x2+ y2

2σ2
x,y

)

(13)

whereσx,y is proportional to the inverse of the local
importance as:

σx,y = η ·
1
Ix,y

. (14)

Here,Ix,y stands for the scalar value of the pixel(x,y)
of I, andη is a weight coefficient that controls the
degree of blur effects. In our implementation, we
choseη = 5. After applying this variable-kernel-
convolution, we obtain the final output as:

Output= (Input∗G)(x,y). (15)

4 RESULTS

We implemented our method in C++ and tested it on a
notebook with a 2.4GHz Intel CPU and 2GB memory.
The results show that our system can comfortably pro-
cess videos at 160×120 resolution in real time (about
40fps), and videos at 320×240 resolution in semi real
time (about 16fps). The experiments also suggest that
the computation time is roughly proportional to the
number of pixels in the input image. Figure 1 shows
the results of static and dynamic scenes, which were
captured with an ordinary web camera.

Since the DOF effect is advantageous in that it in-
fluences each colour channel independently (Kosara
et al., 2002a), our method can be applied to video
clips that have only one intensity channel, for exam-
ple, such as greyscale videos obtained through video
surveillance systems. We also tested our system by
applying it to videos that were used as stimuli in

change blindness experiments. We found that our sys-
tem can emphasize gradual changes such as objects
slowing changing in its position, colour, and shape,
while we often fail to detect these changes without
such visual enhancements (Simons, 2000).

To evaluate the effectiveness of our method, we
also conducted eye-tracking experiments, in order to
investigate how our method can aggressively direct
the visual attention of the viewers. The original and
visually enhanced versions of a natural scene were
displayed in a random sequence with the resolution
of 800x600 pixels. Subjects (8 males and 2 females)
were asked to freely look at each image for 10 seconds
while their gaze movements were recorded with a To-
bii X120 non-intrusive eye tracker. Figure 6 shows
the comparison of the results, which indicates the fact
that we pay more visual attention to the warning signs
on the top right in the enhanced version of the scene.
Careful analysis of the recorded gaze movements also
suggests that the first gaze fixation on the warning
sizes has been reduced from 6.15s to 4.95s in aver-
age due to the DOF effects, while we count the time
as 10.0s in the case that the subject did not notice the
warning signs.

5 CONCLUSIONS

In this paper, we have first introduced the definition
of the importance map, which represents the percep-
tual importance of a visual scene by extraction and
combination of low-level features. Based on this im-
portance map, we enhance the salient features in the
input scene by applying semantic depth of field effects
to naturally guide the visual attention of the viewers.
The whole pipeline can be executed in real time with-
out any user-intervention, and the experiment results
suggest that our method can actually assist people in
rapidly finding significant features in the scene.
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Figure 5: Adjustment by the functionS(x). (a) Input image. (b) Importance map before the adjustment. (c) Importance map
after the adjustment. Note that several objects (such as a blue basket onthe upper left) gain high importance values while
other objects that already pop out are further enhanced.
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Figure 6: Change in the distribution of gaze fixation times. (a) An original image and (b) its corresponding distribution of
gaze fixation times. (c) The enhanced image and (d) its corresponding distribution of gaze fixation times. Warning signs direct
more visual attention due to the depth of field effects.
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