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ABSTRACT

The Interval Volume Decomposer (IVD) is an interface for decomposing an entire volume into interval volumes
each of which characterizes a distinctive volume feature. The advantage of the IVD is that it allows us to look
inside the volume by peeling interval volumes from outside to inside not only interactively but also automat-
ically. This is achieved due to the rigorous analysis of nested structures of the decomposed interval volumes
by constructing a level-set graph that delineates isosurface transitions according to the scalar field. A robust
algorithm for computing such level-set graphs is introduced in order to extract significant structures in the vol-
ume by putting together local interval volumes into a finite number of global groups. Several decomposition
examples of medical and simulated datasets are demonstrated so that the present interface effectively traverses
the underlying structures of the volume.
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1. INTRODUCTION

Generally, we often recognize object shapes through their 2D projections such as photos, pictures, and computer
displays. For example, especially in the case of surface shapes, rotating an object allows us to intuitively capture
its overall shape. On the other hand, volume datasets have the depth and thus are rather difficult to look
through entirely at a time for seeking their inner complicated structures. While several excellent techniques for
illuminating inner structures in a volume have been already established, understanding such inner structures is
still a time-consuming task because it requires numerous trial and error visualization processes.

Recently, a technique called volume peeling has received much attention because it provides us with the
means to clarify the inside of the volume by peeling the outer subvolume. While the technique seems to be very
promising, it is likely to offer inconsistent decomposition of the volume because the subvolumes to be decomposed
are selected by users heuristically. This means that conventional volume decomposition for peeling inevitably
depends on the users’ trial and error steps, and its automation has been no doubt impossible.

This paper therefore presents an interface called an Interval Volume Decomposer (IVD) and its implementa-
tion, for exploring the inside of a volume by peeling off outer subvolumes systematically. This interface effectively
decomposes an entire volume into a finite number of interval volumes (IVs) that reflect its underlying global
features, and thus guides users in the actual process of such decomposition in an easy and intuitive way. Since
the interface uses IVs as primitives for the decomposition, it can realize a scenario for their automatic outside-
to-inside decomposition. Fig. 1 shows selected frames of such a scenario, where a sheep heart1 is automatically
decomposed into feature IVs using our interface (see Section 5.2 for more details). As shown in this figure,
our interface removes the outer IVs one by one because it can identify inner and outer IVs with ventricles and
muscles of the sheep heart, respectively.

The IV decomposition in this framework is based on a level-set graph of the given volume. The level-set
graph delineates topological transitions of isosurfaces according to the scalar field. The paper also explains a
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Figure 1. Scenario for decomposing the volume of “sheep heart”. The graph at the center shows the corresponding
interval volume structure.

robust algorithm for extracting such level-set graphs even when they contain high-frequency noise and degenerate
singularities. This algorithm finally produces a relatively small number of IVs by clustering minor IVs together
to form significant ones that constitute the volume decomposition reflecting its global features. The level-set
graph also allows us to investigate the nested structures of the decomposed IVs, and thus perfectly supports the
systematic removal of the IVs from outside to inside.

This paper is organized as follows: Section 2 refers to previous studies relevant to ours. Section 3 explains
an algorithm for extracting a level-set graph of a given volume and its decompositions so that the decomposed
IVs capture its global features. An algorithm for extracting inclusion relationships between the IVs using the
extracted level-set graph is described in Section 4. Section 5 demonstrates our interface for volume decomposition
together with its application examples, and Section 6 concludes this paper and refers to future work.

2. RELATED WORK

2.1. Volume Manipulation and Deformation

The smallest units for volume decomposition are undoubtedly voxels. As a pioneering work on such voxel-
based editing for volumes, Yamaguchi et al.2 proposed a method that uses octrees to search 3D space in a
volume hierarchically. Due to the recent progress in computer performance, this work has led to an approach
called volume sculpting where virtual volume objects are designed by direct manipulation. Galyean and Hughes3

proposed the first volume sculpting system by extending the pixel-based 2D canvas for painting systems to voxel-
based 3D clay. Wang and Kaufman4 augmented the reality of the interface by implementing carving and sawing
tools and assigning material attributes such as colors and textures to the volume.

On the other hand, as the virtual reality technologies have been developed, an idea of haptic rendering has
emerged to define a process of generating forces in response to user interactions with virtual objects through
haptic devices.5 Avila and Sobierajski6 first introduced this idea to the volume sculpting systems, and Chen and
Sun7 improved the idea to realize a real-time sculpting system that enables a haptic device with many degrees of
freedom. Volume peeling can be thought of as one of the editing processes used in the volume sculpting systems.

An anatomical metaphor has also inspired several methods especially for dissecting medical volume datasets
obtained by CT and MRI scans. For example, Lorensen8 extended the traditional texture thresholding technique
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Figure 2. Isosurface transitions (on the left) and the corresponding level-set graph (on the right). The nodes of the
level-set graph represent critical points in a volume, and are arranged according to their scalar field values. The same
color is assigned to a link of the level-set graph (on the right) and its corresponding subvolume (on the left).

to multi-dimensions to yield a technique called boolean texture, which allows us to accentuate a specific set of
features of interest from complicated nested geometry while concealing the others. He devised a variety of texture
clipping tools, including telescoping and simulated surgery. LaMar et al.9 generated effects of a magnification
lens so that we can observe the inside of a volume through holes on the boundary. McGuffin et al.10 implemented
a set of more general deformation operations, which allow us to observe the interior parts in connection with
their surroundings in the volume browsing.

Apart from these software-based approaches, hardware-assisted volume deformation techniques have also been
proposed. Kurzion and Yagel11 implemented fast volume deformation by deflecting cast rays in volume rendering.
Wiskopf et al.12 devised a fast clipping method by exploiting per-fragment operations on the graphics hardware
in texture-based volume rendering. More recently, Nagy and Klein13 presented the concept of volumetric depth-
peeling, where they sorted the intersections between an isosurface and a cast ray according to the depth, and
controlled the transparency of the intersections from front to back to generate the effects of volume peeling.

However, these volume decompositions cannot represent the systematic analysis of the volume features be-
cause they strongly depend on users’ preference and have no theoretical justifications. Conversely, the present
framework offers more systematic decompositions of the volumes because it employs well-defined IVs as decom-
position primitives and takes advantage of the level-set graph that outlines the global structure of the volume.
The remainder of this section describes related work on level-set graphs and IVs.

2.2. Isosurface Tracking Using Level-Set Graphs

A level-set graph delineates the topological transitions of an isocontour/isosurface according to the scalar field,
and serves as a tool for exploring its trajectories in a given dataset. The Reeb graphs14 and contour trees15 are
among the level-set graphs. Fig. 2 illustrates the transitions of an isosurface in a volume and its corresponding
level-set graph, where the nodes of the graph are arranged according to the scalar field from top to bottom.
Actually, these nodes locate critical points where topological transitions of an isosurface occur as the scalar field
value changes. Note also that the same color is assigned to a link of the level-set graph and its corresponding
subvolume in the figure.

An optimal algorithm for extracting level-set graphs from volumes is constructed by van Kreveld et al.,16 and
has recently been extended and improved to handle objects of any dimensions by Carr et al.17 Originally, the
level-set graph only pursues the change in the number of connected isosurface components, and cannot detect the
change in the topological type (genus) of each connected component. Nonetheless, Pascucci and McLaughlin18

solved this problem by tracking the Euler number of an isosurface as the scalar field value changes. In addition,
Takahashi et al.19 and Carr et al.20 presented an algorithm for reducing the complexity of level-set graphs in
order to illuminate the global isosurface transitions of the volume.

The level-set graphs were also used to explore the inner structure of the volume in the pioneering work of
Bajaj et al.15 Recently, Carr and Snoeyink21 presented a more flexible interface that can track any component
of an isosurface at an arbitrary scalar field value, together with an improved algorithm for extracting the level-set
graphs.



In this way, the level-set graph gives us an important clue as to how an isosurface evolves in a volume. While
such isosurface evolution reveals the inner structure of the volume, it still cannot provide an intuitive volume
decomposition because the isosurface itself has zero thickness.

2.3. Interval Volumes (IVs)
The IV is formulated by Fujishiro et al.22, 23 and Guo24 as a generalization of the isosurface, and defined as a
subvolume that corresponds to some range of the scalar field value. The subvolumes in Fig. 2 are examples of
such IVs. The IV becomes an isosurface when the corresponding range vanishes, and an entire volume when
the range covers all the scalar field values. The IVs encourage a quantitative analysis of region-of-interests in
the volume rather than isosurfaces by taking into account the thickness of each isosurface. A sophisticated
tetrahedralization scheme for IVs has also been constructed by Nielson and Sung.25

3. INTERVAL VOLUME DECOMPOSITION
This section explains an algorithm for decomposing an given volume into a set of significant IVs by constructing
the level-set graph that delineates the corresponding isosurface transitions. In our framework, the decomposition
primitive is matched with some link of the level-set graph, and thus is defined to be an IV bounded by end
critical isosurfaces (i.e. isosurfaces containing critical points). In practice, our algorithm extracts the level-set
graph first by partitioning the given volume into minimal IVs, and then finds a finite number of principal IVs
by simplifying the extracted level-set graph.

For constructing the level-set graph, we use an algorithm for topological volume skeletonization proposed by
Takahashi et al.26 This algorithm has been developed by combining the algorithm of Carr et al.17 for tracking the
number of isosurface connected components, the algorithm of Pascucci and McLaughlin18 for tracking the genus
of each isosurface component, and an improved algorithm of Takahashi et al.19 for IV clustering. Consequently,
the topological volume skeletonization algorithm consists of the following seven steps:

1. Adaptive volume tetrahedralization
2. Constructing join and split trees (Fig. 3(a),(b))
3. Tracking the number of isosurface components (Fig. 3(c))
4. Tracking the genus of isosurface components (Fig. 3(d))
5. Constructing the contour tree (Fig. 3(e))
6. Constructing the volume skeleton tree (Fig. 3(f))
7. IV clustering (Fig. 3(g))

Each step will be explained briefly in the remainder of this section. Details are found in the reference.26

3.1. Adaptive Volume Tetrahedralization
Before constructing the level-set graph, it is necessary to interpolate between the scalar field values of the
given voxels within the 3D volume domain. For this purpose, our algorithm uses adaptive tetrahedralization to
efficiently perform a simple linear interpolation.26 Since this scheme adaptively assigns small tetrahedra to
the space where necessary, it can realize low computational complexity and small memory space. Note that we
assume that the voxels on the volume boundary share edges with the virtual minimum, which has the smallest
scalar field value −∞ of all the voxels and is artificially introduced for later use.19

3.2. Constructing Join and Split Trees
After the linear interpolation, we use the algorithm of Carr et al.17 to construct two graphs individually, a
join tree (JT) that represents isosurface appearance and merging as the scalar field value decreases, and a split
tree (ST) that represents isosurface disappearance and splitting. Here, both JT and ST contain voxels that
participate in the adaptive tetrahedralization as the nodes. For constructing the JT and ST, the algorithm first
sorts the list of voxels in descending and ascending orders according to the scalar field respectively, and picks the
first voxel from the list to add the graphs by taking into account their connectivities in the tetrahedralization.
For example, we can obtain a JT and an ST as shown in Figs. 3(a) and (b), respectively. Note that the value of
each node represents its corresponding scalar field value while the letter “V” indicates the virtual minimum.
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Figure 3. Steps for topological skeletonization algorithm: (a) join tree (JT), (b) split Tree (ST), (c) augmented contour
tree (ACT), (d) ACT with genus labels, (e) contour tree (CT) with genus labels, (f) volume skeleton tree (VST), and
(g) simplified VST. The value of each node represents its scalar field value, where the node with the “V” is the virtual
minimum.

3.3. Tracking the Number of Isosurface Components

The next step is to find the augmented contour tree (ACT) that tracks the change in the number of isosurface
connected components. Actually, the ACT is one of the level-set graphs, and is easily obtained from the previous
JT and ST. For example, the ACT in Fig. 3(c) is constructed by extracting the isosurface appearance and
merging in JT (in red) and isosurface disappearance and splitting in ST (in blue). We are now ready to see that
each link of the constructed ACT corresponds to a minimal IV.

3.4. Tracking the Genus of Isosurface Components

As mentioned earlier, the ACT can track the change in the number of isosurface connected components while
it cannot detect the change in the topological type (genus) of each connected component, including isosurface
transitions from a torus to a sphere and vice versa. We avoid this problem by concomitantly using the algorithm
of Pascucci and MaLaughlin,18 which finds the change in isosurface topological type by tracking the change in
the Euler number as the isosurface passes through each voxel. Fig. 3(d) illustrates the resultant ACT where the
algorithm successfully extracts the critical points that invoke a topological transition from a sphere to a torus
and the reverse transition. Here, a number assigned to each link of the ACT indicates the genus (i.e. the number
of torus holes) of the corresponding isosurface component.

3.5. Constructing the Contour Tree

Removing the non-critical nodes from the ACT provides us with the contour tree (CT), which is also one of the
level-set graphs. This process actually puts the minimal IVs together into feature IVs, which are now bounded
by end critical isosurfaces.

3.6. Constructing the Volume Skeleton Tree

This step is intended to resolve all the critical points of multiple degrees in order to construct the volume skeleton
tree (VST).19 The VST is again one of the level-set graphs, and its node has either of the connectivities shown
in Fig. 4. According to the types of non-degenerate topological transitions of isosurfaces, the nodes of the VST
can be classified into four groups: C3(appearance), C2(merging), C1(splitting), and C0(disappearance).19 With
the help of this connectivity rule, our algorithm can obtain the VST by resolving a multiple critical point into
single (i.e. non-degenerate) ones as shown in Fig. 3(f).
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Figure 4. Connectivities of the nodes in the VST19: The node represents a critical point and the link represents an IV.

3.7. IV Clustering
The final step is to simplify the VST by removing the minor critical points arising from noise and degeneracy,
so as to find the global topological structure of the volume.19, 26 Indeed, the simplified VST offers the final
global IV decomposition for our volume peeling manipulation. In the present framework, our algorithm removes
either of the three candidate links C3–C2, C0–C1, and C2–C1 (or C1–C2) step by step if the link has the smallest
weight. Here, the weight value assigned to each candidate link for removal is defined as

{IV volume} × {the corresponding interval in the scalar field}. (1)

This effectively estimates the lifetime of the corresponding isosurface evolution as the scalar field value changes,
and enables systematic IV clustering. Fig. 3(f) depicts this process where a link with a yellow circle of the VST
will be removed and then implicitly registered with its incident link as indicated by the arrow. Accordingly, the
corresponding IV is combined with its neighboring IV by clustering. In this way, the algorithm obtains the final
global VST where its links represent the final IV decomposition of the volume (Fig. 3(g)).

4. DETERMINING DECOMPOSITION ORDER OF INTERVAL VOLUMES

In order to peel the decomposed IVs systematically from outside to inside, we need to determine the IV decom-
position order that takes into account the inclusion relationships between the IVs. The IV inclusion relationships
represent spatial configuration where an outer IV completely encloses inner IVs, and thus differ from simple
occlusion relationships where front IVs occlude back ones. This section first describes an algorithm for ex-
tracting such inclusion relationships automatically from the VST,27 and then presents how to determine the
decomposition order of the IVs for systematic volume peeling.

4.1. Isosurface Inclusion Relationships at Saddles
According to Takahashi et al.,19 isosurface transitions at saddle critical points of C2 and C1 are classified into
four cases respectively as shown in the central column of Fig. 5. By following the notation in Shinagawa et
al.,14 we call isosurfaces solid if they expand as the scalar field value decreases while hollow if they shrink. The
leftmost and rightmost columns in Fig. 5 represent subgraphs around the critical points of C1 and C2 where a
different color is assigned to each link according to whether the corresponding isosurface is solid or hollow. We
are now ready to see from Fig. 5 that the IV inclusions occur only in the transition paths of the row (B). In fact,
this classification table will help us find systematic decomposition order of IVs in the following process.

4.2. Determining the IV decomposition order by tracing the VST
In the present algorithm, the IV decomposition order is extracted by tracing the links of the VST. For example,
suppose that we are going to extract the decomposition order from the VST shown in Fig. 3(g). As shown in
Fig. 6(a), our tracing process starts from the virtual minimum n3 to identify all the links with solid or hollow IVs,
because the link incident to the virtual minimum is proven to be an outermost solid isosurface in our framework.
Prior to the process, the algorithm prepares two FIFO queues Qsolid and Qhollow for solid and hollow links,
respectively, and adds links traversed in the upward direction to Qsolid while those traversed in the downward
direction to Qhollow. In addition, Qorder is introduced to retain the links that represent the IV decomposition
order. Initially, Qhollow and Qorder are empty while Qsolid has the link L0 as described above (Fig. 6(a)).

Our algorithm first identifies all the solid links reachable from the virtual minimum only through upward
traversal. This process begins with deleting the link L0 from Qsolid and adds it to Qhollow, and accordingly
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Figure 5. Classification of isosurface transitions at saddle critical points of C2(splitting) and C1(merging) according to
the spatial configuration in 3D space. The horizontal arrows in the central column indicate isosurface transitions as the
scalar field value reduces. Different colors are assigned to solid and hollow links of the VST.

climbing the VST link L0 from n3 to the C1-type critical point n1 while L0 is marked “visited.” Since n1 has
two downward links one of which is known to be solid, n1 coincides with the critical point of (B)-C1 according
to the classification of Fig. 5. Note that the arrows in the leftmost and rightmost columns in Fig. 5 indicate the
direction of the VST traversals in this process. This lets us insert the solid link L1 to Qsolid while the hollow
link L2 to Qhollow as shown in Fig. 6(b).

The upward tracing process continues to handle the links in Qsolid until it becomes empty as shown in
Fig. 6(c). After Qsolid becomes empty, the algorithm begins to handle the links in Qhollow. In this case, the
algorithm resumes the traversal from n1 to n2 through L2 in the downward direction (Fig. 6(d)). Finally, as
shown in Fig. 6(e), the tracing process completely fixes the decomposition order of IVs while locating their
inclusions by referring to Fig. 5.

The decomposition order of IVs obtained here is justified as follows: As described above, the algorithm first
traces the VST from the virtual minimum in the upward direction so that it can add all the reachable solid links
to the queue Qsolid in the order that they are visited. Since the solid isosurface shrinks as the scalar field value
rises, the order of the links coincides with the outside-to-inside IV decomposition order we want. If we have
encountered incident hollow links in the previous upward traversal, we trace the VST from the hollow links in the
downward direction this time in the order that the hollow links are visited. This downward traversal only visits
reachable hollow links that shrink as the scalar field value reduces, which is again consistent with the desired IV
decomposition order. In addition, the hollow links in Qhollow represent inner IVs contained in an outer IV that
has already been processed. We then perform the second upward traversal of the VST if we have found incident
solid links again on the way. This process terminates when all the links of the VST have been handled, and the
resultant queue Qorder represents the order in which we peel off the corresponding IVs.

Thanks to this algorithm, our interface can retain the IV inclusion relationships automatically from the VST,
and stores them as IV inclusion trees as shown in Fig. 7.28 Here, the IV inclusion trees are represented as planar
trees (in yellow) where the nested structures of IVs are explicitly coded. The VST associated with IV inclusion
trees are also employed in the present interface, as shown at the centers of Figs. 1, 10, and 11.

5. INTERFACE FOR INTERVAL VOLUME DECOMPOSITION

So far we have seen how to decompose the entire volume into IVs to characterize the global volume features using
the topological volume skeletonization. This section describes the details of the Interval Volume Decomposer
(IVD), which is an interface for systematically peeling subvolumes from outside to inside. Fig. 8 shows screen
images of the IVD where it decomposes a volume dataset having the same VST as in Fig. 3(g). The top window
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Figure 6. Steps for extracting the IV decomposition order.
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Figure 7. IV inclusion trees (in orange) for the VST shown in Fig. 3(g).

is for displaying the VST together with its IV inclusion trees, as defined in Fig. 7. The bottom window is for
presenting the decomposed IVs where a user can peel off outer IVs from the inner ones. The two windows provide
an interface for selecting an individual IV using a pointing device as well as changing the viewpoint for each
object. In addition, the same color is assigned to a VST link and its corresponding IV in order to exhibit the
correspondence between them∗. For this purpose, the IVD generates the same number of different colors as that
of the decomposed IVs by sampling the hue range from red to blue with uniform intervals.

The remainder of this section is devoted to describing how to accomplish the IV decomposition using the
IVD, either interactively (Section 5.1) or automatically (Section 5.2).

5.1. Interactive IV Decomposition

The interactive IV decomposition proceeds by specifying the IV to be excluded using a pointing device such as a
mouse. Fig. 8 shows screen images where the outermost IV of the remaining subvolume is interactively removed
using the IVD. As shown in Fig. 8(a), a user notifies the interface of the IV to be removed either by clicking
the red subvolume in the bottom window or by clicking the red link in the top window. The interface changes
the status of the selected IV by reducing the opacity of the corresponding subvolume in the bottom window and
emphasizing the corresponding link in the top window, as shown in Fig. 8(b). Note that at this point the user can
look at the inner structure of the remaining IVs through the outer translucent one. When the user confirms this
selection, the interface finally removes the selected IV and leaves its silhouettes instead in the bottom window,
while the corresponding link in the top window is grayed out, as shown in Fig. 8(c). Here, the brightness of the
silhouettes is controlled according to the distance from the viewpoint in order to give a depth cue to the user. Of
course, the present interface also permits the user to retrieve the eliminated IVs by clicking the corresponding
VST link again. Consequently, as demonstrated in Fig. 8, the IVD provides an effective means of eliminating

∗Four colors are used for the VST nodes to distinguish between their types: C3 (in red), C2 (in yellow), C1 (in orange),
and C0 (in light blue).
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Figure 8. Screen images of the IVD where IVs are decomposed interactively: (a) The outermost IV (in red) is specified
by a pointing device. (b) The selected IV becomes translucent (on the right) while its corresponding link is emphasized
(on the left). (c) After the selection is confirmed, the IV is removed and its silhouettes are displayed in place (on the
right) while the corresponding link is faded (on the left).

(a) (b)

Figure 9. Supplementary operations: (a) An operation for moving the outermost IV, which is controlled by a pointing
device. (b) An operation for clipping the remaining subvolume where the clipping plane is indicated by the rectangular
frame in black.

decomposed IVs one by one from outside to inside while allowing the user to fully recognize the complicated
inner structures of the target volume.

The IVD has additional facilities for exploring the inside of the volume as shown in Fig. 9. For example,
the user can move the outermost IV by dragging it with the pointing device in the bottom window in order
to confirm the arrangement of the inner IVs as shown in Fig. 9(a). Furthermore, the user can settle and move
a clipping plane at any time to examine the cross-sections of the remaining IVs, where the clipping plane is
indicated by the rectangular frame (in black) as shown in Fig. 9(b).

5.2. Automatic IV Decomposition

The present scheme allows the user to give a systematic IV decomposition order that reflects the global nested
structure of the IVs in the volume. In particular, using the IV decomposition order, the IVD automatically gen-
erates a scenario for peeling the IVs from outside to inside and then produces an animation for the corresponding
peeling steps.

Figs. 1, 10, and 11 present scenarios for volume peeling using the present IV decompositions. In these
scenarios, the decomposed IVs gradually disappear in accordance with the order of the VST links in the extracted
list. In each of the corresponding animations, the IVD begins to reduce the opacity of the second IV without
waiting for the first IV to fade out completely. This consecutive disappearance of outer IVs makes it possible
for users to intuitively understand the complicated inner structures in a volume. Furthermore, the silhouettes



of the IVs will smoothly emerge in the animation because their color gradually becomes conspicuous as the
corresponding IVs become transparent.

It is obvious that the space of interest shrinks step by step as outer IVs are removed one by one in the
decomposition scenarios. This motivates us to equip the IVD with close-up views of the target volume as the
IV decomposition proceeds. Actually, the interface realizes such an automatic close-up views by controlling the
distance between the viewpoint and target volume in proportion to the total size of the remaining IVs.

As described in Section 1, Fig. 1 shows a scenario in which the volume of a sheep heart (177 × 177 × 177)1

is dissected from outside to inside using the IVD. This example demonstrates that the present interface works
well and provides a systematic process of decomposing nested structures even for such an anatomical volume.
Fig. 10 is a simulated dataset (41 × 41 × 41), where the two-body distribution probability of a nucleon in the
atomic nucleus 16O is computed.29 This dataset contains a two-fold nested structure of IVs and reveals its
attractive interior through the IVD. Fig. 11 represents another dataset (129 × 129 × 129), which is obtained
by simulating the antiproton-hydrogen atom collision at intermediate collision energy.30 Note that the IVD
successfully resolves the complicated structure of this dataset even though it contains a four-fold nested structure
of IVs. These results prove the potential and feasibility of the present framework.

6. CONCLUSION AND FUTURE WORK

This paper has presented an interface called the Interval Volume Decomposer (IVD) for peeling subvolumes
from outside to inside in order to illuminate the underlying structures in a given volume. The decomposition
primitives used here are interval volumes that reflect a global level-set graph of the volume. The level-set graph
delineates the topological isosurface transitions efficiently, and thus provides us with the systematic means of
decomposing the entire volume into IVs. Furthermore, with the level-set graph, the interface can detect the
nested structures of the IVs and determine the IV decomposition order based on such structures. Scenarios for
decomposing IVs from outside to inside can be automatically generated using the present interface.

Future extensions include enhancing volume peeling operations by providing additional effects such as IV
cutting and deformations. The present interface can also be extended to support IV-based volume visualization
where we have to elaborate methods of controlling the visualization parameters such as transfer functions. It can
also be urged that the IVD gives an ideal set of decomposed IVs for any given volume dataset in a topological
sense. However, domain-specific knowledge might require a subset of the IVs to be merged or to be subdivided
into smaller ones. Therefore, the post-editing functionality should be incorporated into the IVD for its diversified
uses, which is also left as a topic for future work.
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