
Pacific Graphics 2009
S. Lee, D. Lischinski, and Y. Yu
(Guest Editors)

Volume 28 (2009), Number 7

Flow-Based Automatic Generation of Hybrid Picture Mazes

Fernando J. Wong and Shigeo Takahashi

The University of Tokyo

Abstract
A method for automatically generating a picture maze from two different images is introduced throughout this pa-
per. The process begins with the extraction of salient contours and edge tangent flow information from the primary
image in order to build the overall maze. Thus, mazes with passages flowing in the main edge directions and walls
that effectively represent an abstract version of the primary image can be successfully created. Furthermore, our
proposed approach makes possible the use of their solution path as a means of illustrating the main features of the
secondary image, while attempting to keep its image motif concealed until the maze has been finally solved. The
contour features and intensity of the secondary image are also incorporated into our method in order to determine
the areas of the maze to be shaded by allowing the solution path to go through them. Moreover, an experiment
has been conducted to confirm that solution paths can be successfully hidden from the participants in the mazes
generated using our method.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—J.5 [Com-
puter Applications]: Arts and Humanities—

1. Introduction

History has been witness to the presence of mazes and
labyrinths in ancient and modern human civilizations. From
the Cretan and Egyptian labyrinths to the mazes found nowa-
days in assorted newspapers and weekly magazines, it is un-
deniable that mazes are, and have always been, a very close
part of our culture. Mazes have also made their way into the
artistic world in the works of Morales [Mor05], Christopher
Berg [Ber08], and many others, thus turning mazes in con-
ceptual tools for expressing feelings and ideas.

In this paper, we present an approach for automatically
generating mazes from a given picture by taking into account
its most important features and the direction of its edges.
Although numerous maze generation programs are in exis-
tence, most of them create mazes based on square grids. This
simple approach can instantly produce mazes of varied dif-
ficulty, however the expressive ability is rather limited and
highly dependent on the skill of human artists. Our technical
contribution here is to fully automate the maze generation
process by incorporating the flow features inherent in the
provided image motif, while keeping the associated mazes
maximally aesthetic yet challenging.

We also focus our attention to a particular type of maze

that has achieved high levels of popularity in recent years,
called the picture maze, which has the special trait that an ob-
ject or image is revealed once having solved the maze. Our
second technical contribution lies in equipping our mazes
with this trait in order to make them more attractive to maze
solvers. To our knowledge, this is the first attempt to embed
two different image motifs into a single maze, which we re-
fer to as a hybrid maze throughout this paper. Figure 1 shows
one of such mazes and its respective solution path.

This paper is organized as follows: Related work relevant
to the proposed techniques is presented in Section 2. The de-
tails of our maze generation approach are explained in Sec-
tion 3 while Section 4 describes our method for constructing
the solution paths. Discussions and results of our method are
presented in Section 5, followed by conclusions and pointers
to possible future extensions given in Section 6.

2. Related Work

Maze design has been mainly pursued by artists like
Berg and Morales and amateur maze designers such as
Pullen [Pul08]. In particular, Pullen has gathered a huge col-
lection of information on the creation and solution of mazes
on his website Think Labyrinth [Pul08]. From algorithms

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) Primary image (b) Secondary image (c) Resulting maze (d) Solution path

Figure 1: A hybrid maze generated with our approach.

and technical terms to psychological aspects, the informa-
tion he has made available is very complete and compre-
hensive for those who wish to start or delve deeper into the
world of maze design.

Pedersen and Singh [PS06] made research on the genera-
tion of organic labyrinth and maze structures. Their method
is based on the evolution of a set of input curves into a
labyrinth-like pattern, through the application of Brownian
motion, fairing and attraction-repulsion forces. They extend
this work to the creation of structured mazes as well but, as
they point out, the nature of their approach is not really suit-
able for this purpose. Thus, their maze results considerably
differ from those created by humans.

Probably, the most recent significant work on maze con-
struction and design is the one introduced by Xu and Ka-
plan [XK07]. They designed a maze construction system in
which the drawing area is divided into regions by using an
input image as a guide. Then one of several maze textures
is assigned to each of the regions, thus creating a set of in-
dependent mazes that would be then combined into a sin-
gle one by breaking walls in the region boundaries. Such
approach is recommended by Berg on his website Amaze-
ing Art [Ber08], and can produce mazes of high quality.
Although mazes generated with their system achieve high
quality levels, ultimately, the maze construction process is
highly manual, requiring the user to divide the area into re-
gions, assign maze textures to each region, and adjust texture
parameters as necessary.

On the other hand, none of the aforementioned designers
and methodologies addresses the problem of image depic-
tion through maze solution paths. Although both [PS06] and
[XK07] allow the presence of user-specified solution paths
in their mazes, their approaches are not really suitable for
displaying images using the solution paths. Such problem is
reminiscent of space-filling curves [DCOM00], single-strip
triangulation of meshes [GE04] and artistic techniques such
as continuous line illustration [BH04]. Worth mentioning is
the work by Kaplan and Bosch [KB05] in which they pro-
pose a half-toning method based on a single line stroke ob-
tained by solving an instance of the traveling salesman prob-
lem on a set of points obtained through image stippling. Un-
fortunately, such technique is not applicable to our case since

proper image depiction usually depends on a large number
of cities and their careful distribution.

Our work on hybrid mazes is to some extent analogous
to recent work on hybrid images [OTS06]. To create a hy-
brid image, two relatively similar images are combined into
a single one after applying a low-pass filter to the first one
and a high-pass filter to the second one. This results in im-
ages that seem to change as the viewing distance from the
image varies. In our case, input images do not necessarily
need to be similar to each other. However, visualization of
the solution path image has been reported to improve as the
distance from the maze is increased just as in hybrid images.
In particular, our idea is probably more related to the pic-
ture mazes published by Conceptis Ltd. [Con08] in which a
seemingly normal maze created from a square grid turns into
an image once the solution path is traced.

3. Maze Grid Generation

As described earlier, our approach takes as input two dif-
ferent images, and builds a hybrid maze by automatically
generating a maze grid oriented in the main edge directions
of the primary image and then obtaining a path spanning the
grid cells that correspond to the edges and dark regions of
the secondary image. This sections delves on the first part,
i.e., generation of the underlying maze grid.

Our approach for generating maze grids out of images is
basically an extension of the work on directional mazes pre-
sented by Xu and Kaplan [XK07]. They create a maze by
first inferring a vector field from several seed paths drawn by
the user. Then, a set of evenly-spaced streamlines is traced in
the direction of the vector field while a second one is traced
perpendicular to the vector field, thus creating a grid. The
maze is then created by removing walls from the grid.

We automate the construction of the grid by obtaining a
vector field oriented according to the image edges. An edge-
oriented vector field is usually obtained by rotating the im-
age gradient perpendicularly [Her98]. However, this often
results in vector fields lacking smoothness. Also, it has been
demonstrated recently that an image edge field is better rep-
resented by a tensor field whose minor eigenvector field is
colinear with the image gradient [ZHT07]. Nonetheless, for

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) Original (b) FBL-filtered (c) ETF field (d) FDoG-filtered

(e) Line thinning (f) Primary streamlines (g) Maze grid (h) Resulting maze

Figure 2: Overview of the maze grid generation process: (a) An input image is processed with (b) the FBL filter. (c) A heavily
smoothed ETF field is then obtained from the filtered image. (d) The FDoG filter is applied to the FBL-filtered image and
(e) the output is thinned. (f) A primary set of streamlines (in green) is traced in the direction of the vector field by taking the
extracted edges (in red) as a reference. (g) A secondary set of streamlines (in blue) is then traced perpendicular to the vector
field direction, thus creating a grid. (g) A maze can be generated by removing walls from the grid.

our purpose, we have found that the Edge Tangent Flow
(ETF) field proposed in [KLC09] provides fairly smooth
vector fields in a reasonable amount of time. We also make
use of the Flow-based Bilateral (FBL) and Flow-based Dif-
ference of Gaussians (FDoG) filters proposed in [KLC09]
as well. Also, advanced techniques for generating highly
uniform quad meshes from vector fields have been pro-
posed [RLL∗06]. However, we have opted for slightly mod-
ifying the streamline-based approach of [XK07], since this
is a fairly simple approach and results are good enough for
our purposes.

A grid is generated from the input image (Figure 2a) by
first filtering it through the FBL (Figure 2b) in order to
smooth the image regions while sharpening the edges. A
vector field oriented in the edge directions is then obtained
by applying the ETF operator (Figure 2c). The most signif-
icant edges of the image are then extracted with the FDoG
filter (Figure 2d). In the final maze, walls derived from these
contours are drawn thicker than others in order to provide
better depiction. In our implementation, we apply 100 it-
erations of the ETF and 5 iterations of both the FBL and
FDoG filters, all of them with the default parameters spec-
ified in [KLC09]. We use a line thinning algorithm to ob-
tain rather uniform line segments from the extracted edges

(Figure 2e). We have chosen the line thinning algorithm
proposed in [HWL03] for its simplicity and quality of re-
sults. Additionally, cubic spline interpolation is applied to
the thinned line segments in order to smooth them. Stream-
lines are then traced by taking these thinned line segments
as a reference (Figure 2f). In the same way as Xu and Ka-
plan, we use the streamline placement algorithm proposed
by Jobard and Lefer [JL97]. The maze grid is finished with
the tracing of streamlines perpendicular to the vector field
(Figure 2g).

Unlike vector fields used in [XK07], ETF fields usually
present a high amount of singularities, often resulting in
rather short streamlines (Figure 3a). Fortunately, the ETF op-
erator produces vector fields with a high degree of smooth-
ness around their singularities. Thus, instead of stopping the
growth of a streamline once a singularity is found, we can
continue growing it beyond the singularity, in direction op-
posite to the vector field (or in the field direction if it was
initially being grown opposite to it) as shown in Figure 3b.
This effectively reduces the number of short streamlines.

Once a grid has been created, a maze can be constructed
by just removing some walls (Figure 2h). We bias our mazes
so that passages tend to flow in the direction of the vector
field. Biasing consists on assigning relatively larger weights

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) (b)

Figure 3: (a) Excess of short line segments due to large pres-
ence of singularities. (b) This can be overcome by continuing
the growth of streamlines beyond singularities.

to maze walls parallel to the vector field and smaller weights
to walls perpendicular to it, so that walls perpendicular to
the vector field have a tendency to being processed first. In
our implementation, we accomplished this by choosing real
numbers r, s, t, and u in such a way that r < s < t < u, and
assigning random weights within the range [r, t] to perpen-
dicular walls and weights within the range [s, u] to all other
walls. We refer the readers to [XK07] for more information
on this maze biasing.

4. Feature-based Solution Paths

4.1. Basic Strategy

Given a previously generated image-derived grid, we obtain
a solution path from a secondary image (Figure 4a) as fol-
lows:

• Extract the most significant contour edges of the image.
• Determine which cells can be used as part of the solution

path based on the extracted contours and color intensity
information.
• Fill the corresponding cells with cyclic paths.
• Combine all cyclic paths into a single cycle.
• Modify the remaining cycle to obtain a single path with

specified starting and ending points.

The problem of finding a solution path that represents the
main features of an image is NP hard by itself. However, this
can be approximated in a visually-plausible manner with our
approach.

4.1.1. Extraction of Contour Features

Edge detection is performed in the same way as in the previ-
ous section on maze grid generation. We apply the FBL, fol-
lowed by the FDoG filter to the secondary image to extract
its most significant edges and proceed to apply line thinning
on them (Figure 4b). Users are optionally allowed to freely
modify these contours, in order to provide more detail while
reducing the number of unnecessary features.

4.1.2. Obtaining the Set of Potential Solution Path Cells

Before attempting to find the solution path itself, we need to
specify which cells can be actually part of this path. We start
by inferring a set of cell sequences from the extracted con-
tours (Figure 4c). A cell sequence is an ordering of grid cells
such that each cell is a neighbor of the next one and no cell
is duplicated in the sequence. For each contour, we identify
the cells it intersects on the grid and create a sequence based
on the order these cells were intersected. It is not particularly
an issue if cells belonging to more than one sequence exist,
as they will only be used as a base for deciding which cells
can be part of the solution path.

A solution path representing the main contour features of
the secondary image could be generated based on the ob-
tained cell sequences alone. However, this approach often
leads to easily noticeable solution paths due to perturbations
in the flow of passages, as shown in Figure 5. In order to
avoid this, we have opted for representing the image con-
tours as if they had some degree of thickness. This approach
effectively allows the representation of the contours, while
leaving enough space to trace the solution path in a way that
reduces the amount of passage perturbation. For this reason,
we also label, as potential members of the solution path, all
cells separated by at most two cells from any of the previ-
ously obtained sequences (Figure 4d).

The current set of labeled cells partitions the remaining
grid cells into several regions. We can use some of these cells
to represent shadows or areas of low color intensity in the
image. This can be accomplished by generating a binarized
version of the secondary image (Figure 4e) and labeling the
cells that correspond to its black areas (Figure 4f). We can
use simple binary thresholding for this or more advanced
thresholding techniques such as the one proposed in [XK08].
We allow users to edit the binarized version of the image as
well in order to provide more control over the parts of the
maze that will be covered with the solution path.

4.1.3. Filling Maze Cells

Knowing the areas of the grid on which the solution path can
go through, we proceed to fill those areas with cycles while
avoiding passages that disrupt the flow of the maze as much
as possible.

We can easily fill with cycles a given region by taking the
following steps:

1. Choose any pair of unprocessed adjacent cells a and b in
the region.

2. Create an initial cycle with edges (a,b) and (b,a) (Fig-
ure 6a).

3. Select an edge (p,q) from the cycle.
4. Attempt to grow the cycle from (p,q) by assimilating the

cells neighboring p and q, while retaining the cycle con-
dition (Figure 6b).

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) Secondary image (b) Thinned contours (c) Cell sequences (d) Filled contour areas (e) Binarized image

(f) Filled regions (g) Delaunay triangulation (h) Resulting cycle (i) Custom endpoints (j) Resulting maze

Figure 4: Overview of the solution path generation process: (a) A secondary image has its contours extracted (b). (c) Cell
sequences are found by intersecting the thinned edges with a previously generated grid. (d) The vicinity of the sequences is
filled with cycles. (e) A binarized version of the secondary image is obtained. (f) Cells corresponding to dark areas of the
binarized image are also filled with cycles. (g) The Delaunay triangulation of the centroids of all cells belonging to any of the
cycles is computed. (h) The disjoint cycles are then combined into a single one in a shortest distance basis. (i) Paths Ps and Pe
are respectively found from the specified starting and ending points to any cells in the cycle, and the cycle is opened at these
cells, creating a path Pl spanning from start to end by appending Ps and Pe to the longest path derived from the split cycle. (j)
The resulting solution path is generated by filling the corresponding regions with cycles and merging them with Pl .

5. Repeat Steps 3-4 until no more cells can be assimilated
into the cycle.

6. Repeat Steps 1-5 until no pairs of unprocessed adjacent
cells are left in the region (Figure 6e).

This process effectively generates a set of disjoint cycles
that span the specified region, but these cycles very often
disrupt the flow of passages in the resulting maze. We can
reduce the amount of disruptions by making use of the bias-
ing technique, explained earlier in Section 3, in the following
manner:

• Denote as parallel edges all edges in the cycle whose end-
points correspond to grid cells separated from each other
by a wall oriented perpendicular to the vector field.
• Bias edge selection in Step 3, so that parallel edges are

less likely to be chosen than other edges (Figure 6c).
• Further bias edge selection, so that any edges newly cre-

ated by growing the cycle from a parallel edge at Step 4
are chosen before any other edges (Figure 6d).

Using this algorithm, we start by filling the areas corre-
sponding to the contours of the image and then proceed to
fill each region separately.

(a) (b)

Figure 5: (a) The solution path can be clearly seen going
from top to bottom in this maze. (b) This often occurs when
we attempt to find solution paths based only on the cells in-
tersected by the extracted contours.

4.1.4. Merging of Cyclic Paths

The merging of cyclic paths is rather simple, since the union
of two cycles always results in another cycle being created.
We would like to merge these cycles in a shortest distance
basis in the following way:

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) (b) (c) (d) (e)

Figure 6: Growth of a cycle in a horizontally biased region: (a) A cycle is created from a random edge placed in the region. (b)
The cycle is then grown from an edge by appending neighboring cells. (c) The algorithm is biased so that growth is less likely
to occur from edges oriented parallel to the vector field. (d) Once such an edge is processed, we further bias the algorithm so
that edges created at this step are considered before any other edges, in order to avoid passage distortions. (e) The process is
repeated iteratively until no more cells can be assimilated. Note that we focus on a local square-pattern grid in this figure. We
may have a non-regular grid pattern in our framework.

1. Calculate the set C of the centroids of all cells belonging
to any cycle in the region.

2. Compute the Delaunay triangulation T of C (Figure 4g).
3. Let g(x) denote the grid cell corresponding to centroid

x ∈C.
4. Remove the shortest edge (u,v) ∈ T .
5. If g(u) and g(v) are in different cycles, find P(g(u),g(v)),

the shortest path between g(u) and g(v).
6. If P(g(u),g(v)) exists, find another path P′(g(u),g(v))

that joins both cycles while keeping close to
P(g(u),g(v)). This can be done by restricting the
shortest path algorithm to the cells separated by at most 2
cells from any cell in P(g(u),g(v)) and applying distance
penalties each time a cell not in the direct neighborhood
of P(g(u),g(v)) is chosen as part of the path.

7. If P′(g(u),g(v)) exists, open both cycles at the cells
corresponding to the endpoints of P(g(u),g(v)) and
P′(g(u),g(v)), and merge them by using P(g(u),g(v))
and P′(g(u),g(v)).

8. Repeat Steps 4-7 until no more edges are left in T or
only one cycle remains over the domain of grid cells (Fig-
ure 4h).

This procedure is similar to finding the Euclidean min-
imum spanning tree of a set of points while taking initial
point clusters into account. As in the previous subsection,
we start merging the cycles corresponding to the contours
before merging the cycles in the regions.

4.1.5. Arbitrary Starting and Ending Points

The cycle obtained through the algorithm explained in the
previous subsection can easily serve as the solution path of
the maze, as it illustrates the shapes of the input image. How-
ever, the starting and ending points of such a path would al-
ways be relatively close to each other. Nevertheless, we can
easily modify this cycle in order to obtain a path with arbi-
trary endpoints:

1. Find a path Ps from the specified starting point s to any
cell c in the cycle.

2. Find a path Pe from the ending point e to any cell d in the
cycle.

3. Split the cycle in two paths by breaking it at cells c and d.
Denote the longer of the two as Pl and discard the shorter
one.

4. Append Ps and Pe at the front and back of Pl (Figure 4i).
5. Assume a hidden edge (s,e) exists, turning Pl into a cy-

cle.
6. Apply the algorithm explained in Section 4.1.3 by taking

Pl as an initial cycle. Edge (s,e) must be excluded during
the process, so that Pl is never grown from such an edge.

7. Merge the resulting cycles by using the algorithm men-
tioned in Section 4.1.4 (Figure 4j).

8. Remove edge (s,e).

This simple algorithm results in a single path spanning
from the specified starting and ending points of the maze.
Although we have fixed the endpoints of the solution paths
at the top-right and bottom-left corners of our examples, we
can virtually have any combination of endpoints. Once the
solution path is found, the maze can be finished by removing
the walls intersected by the path and breaking the remaining
walls of the maze as necessary.

4.2. Miscellaneous Issues

We have noticed that the approach described in this section
works well for rather simple secondary images with well de-
fined edges, such as cartoon pictures. It performs better if
the image in question has only one object in it. We do not
see this as a serious constraint as current picture mazes usu-
ally depict a single object once solved. Quality is also de-
pendent on the amount of cells in the grid. Mazes generated
through fine sampling of the image flow field usually achieve
solution paths with better depiction results. Also, in order to

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) Bird (b) Racing car

(c) Jet fighter (d) Taj Mahal

Figure 7: Mazes created for the first experiment.

Table 1: Step-by-step timing results of maze construction.

Maze Size FBL ETF FDoG LT SP CS RF CM CE Total
Bird + Hat 1024×782 5.953 37.490 3.401 0.307 44.230 0.378 2.761 1.035 2.314 97.869
Car + Wine glasses 1024×683 5.111 26.998 2.848 0.361 27.137 0.670 12.892 1.305 14.689 92.012
Jet Fighter + Shark 1024×681 5.126 29.902 2.880 0.250 22.228 0.360 0.645 0.952 0.624 62.967
Taj Mahal + Flower 1024×844 6.446 38.629 3.670 0.493 58.323 0.641 3.469 1.376 2.069 115.115
FBL: Flow-based Bilateral ETF: Edge Tangent Flow FDoG: Flow-based Difference of Gaussians LT: Line Thinning
SP: Streamline Placement CS: Cell Sequences RF: Region Filling CM: Cycle Merging CE: Custom Endpoints
All measurements are in seconds.

avoid possible distortions in the flow of passages, it is rec-
ommended to use a secondary image with edges that tend to
flow in the direction of the underlying vector field.

5. Discussions and Results

5.1. Implementation Details

Several results of our approach can be seen in Figures 1,
7, and 8. The CGAL library [CGA07] was used for han-
dling grids and calculating Delaunay triangulations in our
mazes. Creating a maze from 1024× 768 images usually
takes around 90 to 100 seconds on an Intel Core 2 Duo
E6550 2.33 Ghz CPU with 2 GB of RAM. Table 1 provides

step by step timing data for generating the mazes shown on
Figure 7.

5.2. Recognition of Image Motifs in Mazes

Two experiments were conducted in order to verify the ef-
fectiveness of our approach. The first experiment consisted
on showing hybrid mazes (Figure 7) to 100 participants and
asking if they could identify the primary image from the
maze walls and also guess the shape of the hidden object
without solving the puzzle. A second experiment with the
same mazes, this time with color information and drawn so-
lution paths (Figure 8), was conducted on the same group.
Again, they were asked if they could recognize the primary

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

(a) Bird (b) Racing car

(c) Jet fighter (d) Taj Mahal

Figure 8: Mazes created for the second experiment.

Table 2: Results of the first experiment.

Maze (Primary + Secondary Images) PI SI
Bird + Hat 100/100 0/100
Car + Wine glasses 100/100 1/100
Jet Fighter + Shark 92/100 1/100
Taj Mahal + Flower 99/100 0/100
PI: Subjects able to recognize the primary images.
SI: Subjects able to guess the secondary images.

image and if they could perceive which kind of object the
secondary image was. Tables 2 and 3 summarize the results
of these experiments.

Our results show that color information is not a critical
factor for depiction depending on the primary image used
on our mazes. Also, they show the importance of proper im-
age selection. In particular, the edges and color intensity of
the input images should be carefully evaluated. For exam-
ple, the hat in Figure 10a has dark areas on its sides. The
binarized version of the image inherited these dark areas,
resulting in a large filled region in the middle of the maze
(Figure 8a), which was reported to interfere with the per-
ception of the image by the participants. This can, however,
be simply addressed by removing those areas from the bi-

Table 3: Results of the second experiment.

Maze (Primary + Secondary Images) PI SI
Bird + Hat 100/100 89/100
Car + Wine Glasses 100/100 100/100
Jet Fighter + Shark 99/100 100/100
Taj Mahal + Flower 100/100 99/100
PI: Subjects able to recognize the primary images.
SI: Subjects able to identify the secondary images.

narized image. Moreover, the shape and orientation of this
object makes it easy to mistake it with other similar objects
(such as an UFO) when turned into a solution path.

As shown in the results, very few of the participants were
able to identify the secondary images without solving the
mazes first, thus proving the effectiveness of our approach in
keeping the solution paths hidden while still providing good
representation of the image motifs.

5.3. Maze Difficulty

Although results show that our mazes can effectively repre-
sent both images while hiding the solution path, feedback

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

from the participants pointed at the difficulty in solving our
mazes.

The degree of difficulty in our mazes is highly dependent
on three factors:

• Solution path length: Mazes become more difficult as the
solution path increases in length.
• Length of dummy branches: Mazes with longer paths

leading to dead ends are generally more difficult to solve.
• Amount of available grid cells: The difficulty of a maze

increases proportionally to the amount of cells in the grid.

Since our approach requires long paths to effectively con-
ceal the solution of the maze, reducing the difficulty of
mazes by shortening the length of the solution path is of-
ten a very prohibitive option. However, we can still provide
control in the difficulty of our mazes by manipulating the
other two factors to some extent.

Our prototype system can limit the length and branch-
ing of dummy paths stemming from the solution path. We
essentially grow passages, of a random length not exceed-
ing the specified maximum, at several random locations on
the solution path, transforming it into a tree. These paths are
randomly generated, but biased to flow mostly in the direc-
tion of the underlying field. Another parameter controls the
amount of branching levels allowed on these paths. After ap-
plying this process, the remaining cells of the maze can ei-
ther be connected to the tree at random points or isolated
from the tree itself, thus generating a set of disjoint mazes
and limiting the amount of cells that maze solvers have ac-
cess to. We choose to do the latter, since the former could
still produce dummy paths of undesirable lengths. This idea
is still in an early stage, and more sophisticated methods for
further reducing the degree of difficulty is left as a topic for
future work.

Note that the mazes displayed in Figures 7 and 8 were
actually generated with controlled difficulty as explained
above. These mazes were used in a third experiment on
which 10 participants were asked to actually solve them
while tracking the time spent in solving this type of mazes.
Figure 11 provides the gathered timing data for this exper-
iment. It appears that, on average, one of our mazes should
take between 15 to 25 minutes to solve. However, this is with
controlled maze difficulty as we had explained before. No-
tice that this is about the same amount of time required to
solve a regular picture maze, which are, in general, much
smaller in size.

5.4. Degree of Solution Path Perturbation

A fourth experiment was conducted in order to determine the
amount of time required to solve a maze depending on the
degree of perturbation of the solution path. As you might re-
call, our solution paths represent the edges of the secondary
image as if they had some degree of thickness. The same 10

(a) Bird (b) Racing car

(c) Jet fighter (d) Taj Mahal

Figure 9: Primary images used to generate the maze grids.

(a) Hat (b) Wine glasses

(c) Shark (d) Flower

Figure 10: Secondary images used to create the solution
paths.

participants were asked to solve a set of three mazes gener-
ated with the same combination of primary and secondary
images, but having solution paths with different "thickness"
for representing the contours: a single contour solution path,
a slightly thicker solution path and an overly thick solution
path. Figure 12 summarizes the time required to solve these
mazes by each of the participants.

6. Conclusion and Future Work

An automated method for building mazes from images has
been presented in this paper by taking advantage of recently
developed techniques for edge detection and region smooth-
ing of images. Moreover, this work has been further ex-
tended by allowing the customization of the maze solution

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Fernando J. Wong & Shigeo Takahashi / Flow-Based Automatic Generation of Hybrid Picture Mazes

Figure 11: Results of the third experiment.

Figure 12: Results of the fourth experiment.

paths to portray the features of an additionally provided im-
age. The experimental results have shown the feasibility of
our approach in the depiction of images with hybrid mazes.
Discussion on the proper selection of images has also been
provided.

Although our results achieve high visual quality for a
large group of images, they still lack the level of detail found
on the mazes of Christopher Berg and other maze designers.
The maze generation process introduced here could be in-
corporated into Xu and Kaplan’s system [XK07] as a type of
additional feature-based texture, possibly helping designers
into creating mazes that take into account the topology of
the input image. Our solution path generation process could
be incorporated into other maze construction approaches as
well, as long as they can provide a previously generated grid.
Another possible extension would be the establishment of a
measure of compatible images for hybrid mazes to automate
the image selection process. We also would like to explore
the applicability of the present approaches to other problems,
such as the rendering of image mosaics [EW03] and contin-
uous line illustrations [KB05].

Acknowledgements

This work has been partially supported by Japan Society of
the Promotion of Science under Grants-in-Aid for Scientific
Research (B) No. 20300033.

References
[Ber08] BERG C.: Amazeing art, 2008.

http://www.amazeingart.com/.

[BH04] BOSCH R., HERMAN A.: Continuous line drawings via
the traveling salesman problem. Operations Research Letters 32,
4 (2004), 302–303.

[CGA07] CGAL EDITORIAL BOARD: CGAL User and Refer-
ence Manual, 3.3 ed., 2007.

[Con08] CONCEPTIS LTD.: Conceptis puzzles, 2008.
http://www.conceptispuzzles.com/.

[DCOM00] DAFNER R., COHEN-OR D., MATIAS Y.: Context-
based space filling curves. Computer Graphics Forum 19, 3
(2000), 209–218.

[EW03] ELBER G., WOLBERG G.: Rendering traditional mo-
saics. The Visual Computer 19, 1 (2003), 67–78.

[GE04] GOPI M., EPPSTEIN D.: Single-strip triangulation of
manifolds with arbitrary topology. Computer Graphics Forum
23, 3 (2004), 371–379.

[Her98] HERTZMANN A.: Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of SIGGRAPH ’98
(1998), pp. 453–460.

[HWL03] HUANG L., WAN G., LIU C.: An improved parallel
thinning algorithm. In ICDAR ’03: Proceedings of the 7th In-
ternational Conference on Document Analysis and Recognition
(2003), IEEE Computer Society, pp. 780–783.

[JL97] JOBARD B., LEFER W.: Creating Evenly-Spaced Stream-
lines of Arbitrary Density. In Proceedings of the 8th Eurograph-
ics Workshop on Visualization in Scientific Computing (1997),
pp. 45–55.

[KB05] KAPLAN C. S., BOSCH R.: TSP Art. In Proceedings
of Bridges 2005, Mathematical Connections in Art, Music and
Science (2005), pp. 301–308.

[KLC09] KANG H., LEE S., CHUI C. K.: Flow-based image
abstraction. IEEE Transactions on Visualization and Computer
Graphics 15, 1 (2009), 62–76.

[Mor05] MORALES J. E.: Virtual Mo, 2005.
http://www.virtualmo.com/.

[OTS06] OLIVA A., TORRALBA A., SCHYNS P. G.: Hybrid im-
ages. ACM Transactions on Graphics 25, 3 (2006), 527–532.

[PS06] PEDERSEN H., SINGH K.: Organic labyrinths and mazes.
In NPAR ’06: Proceedings of the 4th international symposium on
Non-photorealistic animation and rendering (2006), pp. 79–86.

[Pul08] PULLEN W. D.: Think labyrinth, 2008.
http://www.astrolog.org/labyrnth.htm.

[RLL∗06] RAY N., LI W. C., LÉVY B., SHEFFER A., ALLIEZ
P.: Periodic global parameterization. ACM Transactions on
Graphics 25, 4 (2006), 1460–1485.

[XK07] XU J., KAPLAN C. S.: Image-guided maze construction.
ACM Transactions on Graphics 26, 3 (2007), 29.

[XK08] XU J., KAPLAN C. S.: Artistic thresholding. In NPAR
’08: Proceedings of the 6th international symposium on Non-
photorealistic animation and rendering (2008), pp. 39–47.

[ZHT07] ZHANG E., HAYS J., TURK G.: Interactive tensor field
design and visualization on surfaces. IEEE Transactions on Vi-
sualization and Computer Graphics 13, 1 (2007), 94–107.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.


