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Abstract

Properly drawing clustered networks significantly improves the visual readability of the meaningful structures hidden behind the

associated abstract relationships. Nonetheless, we often degrade the visual quality of such clustered graphs when we try to annotate

the network nodes with text labels due to their unwanted mutual overlap. In this paper, we present an approach for aesthetically

sparing labeling space around nodes of clustered networks by introducing a space partitioning technique. The key idea of our

approach is to adaptively blend an aesthetic network layout based on conventional criteria with that obtained through centroidal

Voronoi tessellation. Our technical contribution lies in choosing a specific distance metric in order to respect the aspect ratios of

rectangular labels, together with a new scheme for adaptively exploring the proper balance between the two network layouts around

each node. Centrality-based clustering is also incorporated into our approach in order to elucidate the underlying hierarchical

structure embedded in the given network data, which also allows for the manual design of its overall layout according to visual

requirements and preferences. The accompanying experimental results demonstrate that our approach can effectively mitigate visual

clutter caused by the label overlaps in several important types of networks.

Keywords: Adaptive layout blending, Force-directed layouts, Centroidal Voronoi tessellation, Chebyshev distance,

Centrality-based clustering

1. Introduction

Networks can successfully capture meaningful features hid-

den behind abstract data, such as social friendships, research

co-authorships, co-purchasing relationships, etc. They rep-

resent such abstract data in a visually plausible manner by5

schematizing individuals/entities as the nodes and their rela-

tionships as the edges. Thus, visualizing the associated net-

works is considered a promising approach to enhancing the

readability of the underlying abstract relationships.

Many important techniques have been developed for aestheti-10

cally laying out the networks on the screen space while avoiding

unwanted node overlaps and edge crossings. The force-directed

approach is one such representative technique; it applies repul-

sive and attractive forces to the nodes and edges of the net-

work and then seeks the finalized network layout as its equilib-15

rium state. Nonetheless, once we try to annotate the network

nodes with text labels, we inevitably struggle against distract-

ing visual clutter arising from the occlusions of such annotation

labels due to the lack of labeling space around the respective

nodes. This becomes even worse when handling densely con-20

nected networks. Incorporating space-partitioning techniques
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may mitigate such visual clutter, although it incurs edge over-

laps as another problem and often degrades the networks’ orig-

inal aesthetic layouts.

This is also true for clustered networks that reflect small com-25

munities inherent in the given abstract data. In fact, it is often

the case that we first identify a set of representative small clus-

ters in each network and rearrange its layout to specifically vi-

sualize such clusters. Labeling the nodes of such hierarchical

networks while maintaining the corresponding structural lay-30

outs will be useful, in the same way as that for the aforemen-

tioned ordinary networks, for ensuring better readability of the

underlying characteristics of the network data.

This paper presents an approach to overlap-free network la-

beling by sparing sufficient labeling space around the network35

nodes [1, 2]. This is accomplished by seeking an adaptive com-

promise between the layouts obtained through the conventional

force-directed approach and through centroidal Voronoi tessel-

lation. An anisotropic Chebyshev distance metric is incorpo-

rated into the Voronoi tessellation in order to fully respect the40

rectangular shapes of text labels associated with the network

nodes. Furthermore, as an optional preprocess, centrality-based

network analysis is introduced so that we can extract represen-

tative small clusters in the network to better reflect the under-

lying structures into the network layout. An extension of the45

aforementioned overlap-free labeling to this class of clustered

networks will be formulated to maximally retain such hierarchi-

cal layouts. Experimental results are provided to demonstrate

how effectively the proposed approach can annotate several typ-
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(a) (b) (c) (d)

Figure 1: Network layouts of social relationships between dolphins [3]. (a) A simple force-directed network layout and (b) the corresponding layout obtained by

our approach. (c) A clustered version of the force-directed network layout and (d) the corresponding layout obtained by our approach. Annotation labels in red have

overlaps with others. Edges in orange indicate node connections contained in the same cluster obtained by the centrality-based network decomposition.

ical types of networks.50

Figure 1 demonstrates that our approach can annotate net-

work nodes with text labels without unwanted overlaps, even

for an ordinary network and its clustered version. By simply

applying the conventional force-directed approach, we cannot

fully avoid overlaps between the annotation labels (Figure 1(a)).55

By contrast, our approach, with the help of space partitioning,

can successfully spare enough labeling space around the respec-

tive nodes (Figure 1(b)). The clustered version is more likely to

have mutual overlaps between the node labels due to the space

limitation (Figure 1(c)). Even in this case, our approach allows60

us to effectively rearrange the node labels while retaining the

original clustered structure for better readability of the corre-

sponding abstract relationships (Figure 1(d)).

The remainder of this paper is organized as follows. First,

we conduct a brief survey of related work in Section 2. In Sec-65

tion 3, we then present our idea of blending network layouts

with that obtained by space partitioning in order to mitigate la-

bel overlaps. The enhancement of distance metrics in space

partitioning to fully respect the rectangular shapes of the text

labels is covered in Section 4. We describe the details of our70

algorithm for adaptively blending the two network layouts by

individually controlling the blending ratio associated with each

network node in Section 5. In Section 6, we extend this tech-

nical formulation for simple networks to clustered networks,

basing our approach on the centrality-based network decom-75

position for inferring underlying hierarchical structures. After

applying our approach to several typical types of networks as

experimental results in Section 7, we conclude this paper in

Section 8.

2. Related Work80

In this section, we review the research most relevant to this

study and classify it into two categories: network visualization

and label annotation.

2.1. Network visualization

Network visualization has been intensively investigated due85

to its technical importance. In practice, it facilitates our under-

standing of the complicated relationships embedded in abstract

network data, including social friendship between individu-

als, co-authorships between scientific researchers, co-purchase

links on Internet marketing, etc [4]. Improving network read-90

ability, as well as reducing its visual complexity, has been an

important research challenge, and several advanced network vi-

sualization techniques have been developed for this purpose.

As the pioneering physically based graph drawing algo-

rithms, the force-directed approach [5, 6] was developed to sim-95

ulate dynamics of network behavior and is widely used to ar-

range aesthetic layouts of networks. The associated algorithms

usually model the network nodes as particles with electronic

charges and edges as coil springs, in order to optimize the net-

work layout as the equilibrium state of attractive and repulsive100

forces arising from Hooke’s law and Coulomb’s law [7]. This

scheme maximally avoids unequal distribution of nodes and un-

wanted crossings between the edges, and thus naturally leads to

an aesthetic layout of the network from a physical point of view.

The physical model of the conventional force-directed ap-105

proach was improved by Hu [8], who introduced multilevel

representation of the network based on octrees in search for

its optimal layout. Simonetto et al. [9] accelerated the com-

putation of the model to realize interactive control of aesthetic

criteria for network visualization. The aesthetic aspects of net-110

work layouts were empirically investigated through the anal-

ysis of human drawings for networks [10] and their clustered

versions [11]. Eye-tracking experiments were conducted to ex-

plore the aesthetic criteria of the network layouts [12]. Addi-

tional criteria were incorporated to visually discriminate cluster115

structures embedded in networks [13, 14, 15] and their 3D rep-

resentations [16].

2.2. Label annotation

Although the force-directed algorithms provide visually

pleasing layouts of network nodes in general, they cannot ex-120

plicitly exclude mutual overlaps between text labels associated

with the network nodes. To directly solve this problem, tech-

niques were further invented that explicitly control the avail-

able space around the network nodes so that we can insert rect-

angular annotation labels. Among these techniques, Dwyer et125
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al. [17] maximized space coverage of the screen space by re-

arranging the annotation labels while maintaining the relative

positions of nodes with respect to the horizontal and vertical di-

rections. Another relevant approach was proposed by Gansner

et al. [18], who extended the aforementioned physical model130

by introducing a stress factor to generate sufficient labeling

space around each node. Note that these approaches can be

categorized as postprocessing approaches that faithfully respect

the original network layouts specified by users or derived from

available layout algorithms. The D3 library [19], which is well-135

known advanced tool for information visualization, enables us

to detect collisions between network node labels, although it

does not completely maintain their relative positions.

Moreover, space-partitioning techniques such as Voronoi tes-

sellation have been introduced to properly prepare space for an-140

notation labels. They help us improve the allocation of label-

ing space while respecting the precomputed network layouts,

such as those obtained by the conventional force-directed ap-

proach. Voronoi tessellation is widely employed for this pur-

pose because it allows us to spare more space around the given145

samples according to their spatial density. Pulo [20] proposed

the concept of recursive Voronoi tessellation to introduce more

labels to the conventional forced-directed approach in the con-

text of network visualization. Another application along these

lines was developed by Wu et al. [21], who used weighted150

Voronoi tessellation for space decomposition, specifically for

embedding annotation labels around schematized metro net-

works. Moreover, Brivio et al. [22] incorporated centroidal

Voronoi tessellation to evenly distribute image sets within the

limited screen space.155

Indeed, centroidal Voronoi tessellation is useful for more

aggressively sparing space around each network node in the

force-directed layout. This is because centroidal Voronoi tes-

sellation usually equalizes the areas of Voronoi cells by moving

each sample to the center of the corresponding cell. Thus, this160

is more likely to rearrange sufficient space around each node

and can avoid unnecessary overlap between the annotation la-

bels. For example, Lyons et al. [23] iteratively applied addi-

tional forces originating from centroidal Voronoi tessellation to

move the labels while keeping the network layout sufficiently165

close to the original one. Gansner and North [24] introduced

a new force extracted from centroidal Voronoi tessellation and

resolved the overlap between annotation labels as a postpro-

cess. Nevertheless, such existing approaches usually compose

the Voronoi tessellation only once during the network anno-170

tation and thus often limit the merit of the space-partitioning

techniques insofar as they introduce redundant labeling space

to resolve the associated label conflicts. Notably Didimo and

Montecchiani [25] recently employed space partitioning based

on conventional parallel-axis treemaps to explore network lay-175

outs. This could potentially be applied to our problem, although

it does not provide enough degrees of freedom in the placement

of node labels in the screen space.

Other labeling techniques, such as internal and external la-

beling techniques, are also relevant to our work. Internal label-180

ing places annotation labels close to the target network nodes

whereas external labeling attempts to place annotation labels

(a) (b)

Figure 2: Label placement of an artificial product co-purchasing network

obtained by (a) the conventional force-directed algorithm and (b) centroidal

Voronoi tessellation.

in the predefined regions, usually boundary regions around the

central content window. For practical applications, algorithms

have also been developed specifically for annotating schematic185

networks such as railway and metro maps [26, 27, 28]. The con-

ventional force-directed approach itself has also been extended

to the map-labeling problem: mutual overlap between the labels

was removed by iteratively applying repulsive forces inherited

from the Coulomb model [29].190

In this study, we explore a hybrid approach of force-directed

algorithms and Voronoi-based space-partitioning techniques,

which means that we pursue an adaptive compromise between

the two techniques. Furthermore, hierarchical network struc-

tures are introduced for better control of the overall network195

layouts.

3. Overlap-Free Annotation of Networks

As described earlier, our approach can be considered a hybrid

one in the sense that it examines a reasonable compromise be-

tween the network layouts obtained by the conventional force-200

directed algorithm and those by the centroidal Voronoi tessel-

lation. In our implementation, we initialize the network layout

using the force-directed algorithm and then gradually adjust the

node positions accordingly, so that the layout remains similar

to the simple force-directed one after introducing forces inher-205

ited from the centroidal Voronoi tessellation. This section first

explains the force-directed formulation and centroidal Voronoi

tessellation, which is followed by our proposed hybrid approach

for seeking a reasonable compromise between the forces pro-

vided by the two layout approaches.210

3.1. Force-directed algorithm

To establish an effective initial layout, we employ the con-

ventional force-directed algorithm. Suppose that we have n

network nodes v0, v1, . . . , vn−1. We introduce the force-directed

model, which simulates the physical dynamics of a coil spring215

to each edge. This is usually formulated using Hooke’s law, as

follows:

Fd(vi, v j) = kd(|v j − vi| − l0)(v j − vi), (1)
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(a) (b) (c) (d) (e)

Figure 3: Transition from the force-directed layout to that of centroidal Voronoi tessellation. (a) α = 0.1. (b) α = 0.3. (c) α = 0.5. (d) α = 0.7. (e) α = 0.9. Here,

(1 − α) and α represents the weights of the force-directed algorithm and centroidal Voronoi tessellation.

where kd represents the constant of the spring, l0 is the origi-

nal length of the spring, and |vi − v j| is the Euclidean distance

between the connected end nodes vi and v j. In our implemen-220

tation, kd is set to be 1.0 by default, and l0 is set to be inversely

proportional to the number of network nodes within the screen

space. In this formulation, we apply the attractive force to all

the pairs of nodes that are connected by edges.

Moreover, each node (i.e., vi) is assumed to have an electrical225

charge and takes a repulsive force exerted by another node (i.e.,

v j) according to the corresponding distances, which is defined

as

Fr(vi, v j) = −kr(v j − vi)/|v j − vi|
2, (2)

where kr corresponds to the electric force constant (i.e.,

Coulomb’s constant) and set to be 0.1 by default in our setup. In230

summary, we compute the sum of these attractive and repulsive

forces to each network node as

Fs(vi) =
∑

j∈Ni

Fd(vi, v j) +
∑

k∈V−{i}

Fr(vi, vk), (3)

where Ni represents an index set of nodes adjacent to vi and

V − {i} represents an index set of all the nodes, excluding i. We

apply this force to each node until the network layout achieves235

an equilibrium state, where we can empirically generate a vi-

sually plausible result that avoids excessive visual clutter, such

as edge crossings. Unfortunately, even with this force-directed

approach, we cannot fully avoid overlaps between the nodes if

they are associated with rectangular text labels, as shown in Fig-240

ure 2(a). In our algorithm, we use this layout as an initial state

for exploring optimized layouts of such an annotated network.

3.2. Centroidal Voronoi tessellation

Centroidal Voronoi tessellation allows us to effectively dis-

tribute seed points uniformly within a finite domain, and it can245

thus potentially mitigate unwanted overlaps between node la-

bels. In centroidal Voronoi tessellation, we usually partition the

space by repeatedly conducting three steps:

1. Compute the Voronoi tessellation with seed points

2. Identify the barycenter of each Voronoi cell250

3. Move a seed point to its corresponding barycenter

These steps are repeated until we can finalize the uniform par-

titioning of the domain.

In Step 1), we first compute the Voronoi tessellation by refer-

ring to the coordinates of each node vi as a seed point. To com-255

pose the Voronoi diagram, a hardware-assisted algorithm [30] is

employed that accelerates the computation by placing 3D cones

of different colors centered at the given seed points and project-

ing them onto the screen from the top. The barycenter of the

Voronoi cell around vi is computed as g(vi) in Step 2). In our260

implementation, the system scans the frame buffer to collect

a set of pixels of the specific color for each Voronoi cell and

computes the barycenter as the average of the corresponding

pixel coordinates. In Step 3), each seed point vi is moved to

the barycenter of the corresponding Voronoi cell g(vi) to uni-265

formly distribute them within the screen space. This amounts

to applying the following forces to each node vi:

Fv(vi) = C(g(vi) − vi), (4)

where C is a predefined constant that controls the strength of

this force and is set to be 10 by default in our implementation.

These three steps are repeated until each seed point (i.e., net-270

work node) reaches its equilibrium position. Figure 2(b) depicts

an example, in which the network nodes, together with their la-

bels, are displaced using centroidal Voronoi tessellation.

3.3. Hybrid approach

As shown in Figure 2(a), the conventional force-directed al-275

gorithm can successfully alleviate visual clutter while it can-

not explicitly spare sufficient space around the network nodes.

Thus, the associated node labels may overlap with each other,

especially when the network is unexpectedly dense in its topo-

logical connectivity. On the other hand, although centroidal280

Voronoi tessellation provides us with an effective means of uni-

formly distributing the network nodes, it is more likely to align

the nodes along the horizontal and vertical directions and can-

not fully eliminate visual clutter including edge overlaps, as

shown in Figure 2(b). Thus, our challenge here is to seek a285

plausible compromise between the two layouts. We are able to

achieve this compromise by smoothly transforming the initial

force-directed layout to that based on centroidal Voronoi tessel-

lation [1].

We accomplish this goal by applying the weighted sum of290

the forces exerted by the two algorithms (cf. Eqs. (3) and (4))

to each node vi, as follows:

Fh(vi) = (1 − α)Fs(vi) + αFv(vi), (5)
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(a) (b) (c)

Figure 4: Network layouts based on centroidal Voronoi tessellation with the

three distance metrics. (a) Euclidean distance. (b) Manhattan distance. (c)

Chebyshev distance.

(a) (b) (c)

Figure 5: Network layouts based on centroidal Voronoi tessellation when the

aspect ratios of text labels are considered individually in terms of nodes. (a)

Euclidean distance. (b) Manhattan distance. (c) Chebyshev distance.

where α is the blending ratio between the two forces. Further-

more, to maximally retain the spatial layout obtained through

the force-directed algorithm, we start with α = 0 and then grad-295

ually increase it so that we can smoothly transform the initial

layout to that of centroidal Voronoi tessellation. This is accom-

plished by computing the total sum of the forces in Eq. (5) ev-

ery time we displace the network nodes and by updating the

weights by a small amount δ once the sum becomes less than300

a predefined threshold. In our approach, δ is set to be 0.02

by default. This allows us to respect the original layout of the

network while sparing more space around the nodes for their

annotations.

Figure 3 shows how we can transform the initial network lay-305

out by incorporating the influence of centroidal Voronoi tessel-

lation, in which the overlaps between the network nodes are

gradually resolved during the transition while respecting the

relative positions of the network nodes in the original layout.

In our approach, we first increase α to 0.6, and further increase310

it up to 0.9 if we still have overlaps between node labels in

the network. This also helps us avoid unwanted edge overlaps,

which often arise from layouts based only on centroidal Voronoi

tessellation, as shown in Figure 2(b).

4. Enhancements of Distance Metrics315

In this section, we detail several enhancements in our choice

of distance metrics. We made these enhancement to establish

a better arrangement of annotation labels. We also describe

additional enhancements, which were made to guarantee the

overlap-free network labeling and to control the placement of320

labels through manual intervention.

4.1. Selection of the distance metric

As the text annotations, rectangular labels are commonly em-

ployed to provide concise explanations for the respective net-

work nodes. Here, we have tested the Euclidean, Manhattan,325

and Chebyshev distances in order to identify the most appropri-

ate distance metric when placing these rectangular node labels.

Suppose that we consider the distances between the two

nodes vi = (xi, yi) and v j = (x j, y j). In fact, these three types of

distances are defined as follows:330

dE(vi, v j) =

√

(x1 − x2)2 + (y1 − y2)2 (6)

dM(vi, v j) = |x1 − x2| + |y1 − y2| (7)

dC(vi, v j) = max(|x1 − x2|, |y1 − y2|) (8)

Here, the distance metrics dE , dM , and dC correspond to the

Euclidean, Manhattan, and Chebyshev distance metrics, re-

spectively. Figure 4 presents the comparison between screen

space Voronoi tessellations based on these three distance met-

rics. Recall that the Voronoi tessellation based on the Euclidean335

distance can be composed by arranging 3D cones centered at

the respective nodes and projecting them from the top [30],

as shown in Figure 4(a). Intuitively, the tessellation based on

the Manhattan distance can be generated by replacing the cones

with 3D square pyramids, in which the sides of each basement340

square are aligned with diagonal directions on the screen space,

as presented in Figure 4(b). By contrast, the Chebyshev dis-

tance transforms the Voronoi tessellation by placing 3D square

pyramids, in which the sides of the basement are aligned with

horizontal and vertical directions, as shown in Figure 4(c).345

It is clear from Figure 4 that the Chebyshev distance metric

is more likely to produce rectangular Voronoi cells, as opposed

to the polygonal and diamond cells generated by the Euclidean

and Manhattan distance metrics. In this sense, the Chebyshev

distance metric is preferable, because the node labels best fit the350

shape of the corresponding Voronoi cells. However, the met-

ric still often fails to completely enclose the rectangular labels,

which will be discussed in the next section.

4.2. Distance anisotropy in sparing labeling space

As the network layout in Figure 4(c) shows, the text label355

“Darjeeling tea” exceeds the boundary of the allocated Voronoi

cell. Because this label contains many letters, and thus its shape

is horizontally longer than other labels. This observation leads

us to the idea of adaptively changing the aspect ratios of such

Voronoi cells according to the size of the corresponding text360

labels. In our approach, this is achieved by incorporating an

appropriate anisotropic metric, which is a modified version of

the Chebyshev distance metric:

d′C(vi, v j) = max(|x1 − x2|, α|y1 − y2|), (9)

where α indicates the aspect ratio of the horizontal side of the

corresponding label with respect to its vertical side.365

Nonetheless, exactly computing the distance based on this

metric is quite difficult if we locally change the aspect ratio

by referring to the labels of the network nodes contained in

5



Euclidean Manhattan Chebyshev

isotropic

occluded labels 108 labels 81 labels 128 labels

anisotropic

occluded labels 28 labels 78 labels 12 labels

Figure 6: Label packing based on centroidal Voronoi tessellation. Labels colored in red have overlap with other labels. The choice of the distance metric and

anisotropy has a significant impact on the number of occluded labels.

the local neighborhood. Instead, in our approach, we approxi-

mate this anisotropic Chebyshev distance metric by scaling the370

square basement of the 3D pyramid according to the aspect ratio

of the corresponding node label when composing the Voronoi

tessellation. This means that the basement of the 3D pyramid at

each node will be horizontally extended to fully accommodate

the annotation label within its Voronoi cell. This is possible be-375

cause we can count the number of letters in each text label and

compute the corresponding aspect ratio beforehand. Figure 5

shows the Voronoi tessellations using the anisotropic versions

of the three distance metrics. In particular, the Voronoi cells in

Figure 5(c) respect the aspect ratios of the corresponding text380

labels and are best fit to their shapes among the three metrics.

We also tested the three distance metrics and their anisotropic

versions by investigating how many labels they can accommo-

date without overlaps within the fixed screen space, as shown in

Figure 6. The comparison indicates that the anisotropic version385

of the Chebyshev distance metric is the best in the sense that

the associated Voronoi tessellation successfully accommodate

the largest number of labels without unwanted occlusions. We

therefore decided to employ this distance metric when compos-

ing the Voronoi tessellations of the screen space for annotation390

purposes.

4.3. Computing overlaps among the labels

In order to fully guarantee overlap-free label annotation over

the networks, we compute the sum of overlaps between the la-

bels during the transformation of the network layout. Suppose395

that the two labels at vi and v j have a rectangular overlapping

area, where wi j and hi j represent the horizontal and vertical

sides of that area, respectively. In this setup, we can compute

the two sides of the label overlap as

wi j = max{0,min{wi/2 + w j/2 − |xi j|,wi,w j}}, (10)

hi j = max{0,min{hi/2 + h j/2 − |yi j|, hi, h j}}, (11)

where wi and hi represent the width and height of the label400

at vi, respectively, and w j and h j are those of v j. In addition,

xi j = |xi − x j| and yi j = |yi − y j|. Now, we can sum up wi j ·hi j for

all the pairs of the nodes vi and v j to compute the total area of

the label overlaps. If the sum of the overlaps vanishes, we can

stop the iterative transformation of the network layout, because405

at that point we can fully guarantee the occlusion-free label an-

notation.

4.4. Selective annotation of network nodes

We also equipped our prototype system with an interface

for interactively selecting network nodes to be annotated even410

when the layout transformation is still in progress. Users can

select a single node by clicking it with a mouse or a group of

nodes by enclosing a rectangular region with a box interface.

This often facilitates attempts to manually control the place-

ment of specific nodes, and especially clusters when annotating415

clustered networks. We also allow users to arbitrarily zoom

6



in/out and translate the network in order to facilitate fine tuning

of the network annotation on a limited screen space.

5. Adaptively Blending Network Layouts

The formulation we have developed so far is designed to in-420

terpolate between the two layouts obtained by the conventional

force-directed approach and centroidal Voronoi tessellation, by

employing a single ratio for blending the entire layout at all the

network nodes [1]. However, this often incurs redundant space

for labeling, especially around sparsely distributed nodes, as425

shown in Figure 7(b). This implies that inappropriate design

of the blending ratios often degrades the quality of the network

layout because the initial aesthetic layout cannot be plausibly

retained. In this section, we detail how we transform the blend-

ing ratios individually at the network nodes, which leads to a430

better equilibrium state between the incorporated force-directed

algorithms and centroidal Voronoi tessellation.

5.1. Laplacian smoothing for adjusting blending ratios

The problem of uniformly blending the aforementioned two

forces is to explore the global compromise between the force-435

directed layout and that obtained from centroidal Voronoi tes-

sellation with only the single blending parameter. This is ex-

plained by the fact that the density of the network nodes spa-

tially changes within the screen space and thus the demand for

additional labeling space differs accordingly. Empirically, it is440

better to find a local compromise that adaptively introduces the

additional space around each node according to the demand.

This leads us to the idea of propagating such space allocation

request from one node to its neighbors by preparing the blend-

ing parameter for each node.445

Let us summarize a naı̈ve scheme for spreading the change

in the blending ratios as follows. First, we compute the initial

network layout with only the conventional force-directed ap-

proach. We then adaptively adjust the blending ratio of each

network node to find an acceptable local equilibrium state be-450

tween the two layouts. For example, let us denote the blending

ratio of vi by αi. We can implement adaptive blending of the

two layouts by increasing αi by a small amount (0.02 by de-

fault in our implementation), if the annotation label of vi still

needs more space for its placement. Furthermore, we smooth455

out αi with the blending parameters of its neighbors so that we

can propagate the space allocation request to the nodes in its

vicinity. In our implementation, we initialize the blending ratio

αi to 0.0 and iteratively update it through the local smoothing

process until the label overlaps are fully resolved.460

As for the smoothing process, we apply the typical Laplacian

smoothing approach at this stage to find the smooth transition

of the blending ratios. This is achieved by updating αi to α′
i

using the following equation:

α′i =
∑

j∈Ni

α j/|Ni|, (12)

where Ni represents an index set of the neighbor nodes around465

vi and |Ni| indicates its size, respectively. This amounts to re-

placing the previous blending ratio at vi with the average ratios

of its neighbors. The results obtained by the Laplacian smooth-

ing operation are shown in Figure 7(c).

5.2. Two-step smoothing for adjusting blending ratios470

In practice, Laplacian smoothing successfully transforms

an initial network layout obtained by the conventional force-

directed approach (Figure 8(a)) to a visually acceptable one

(Figure 8(b)). However, the resultant network still contains re-

dundant space around the network nodes, especially when they475

are sparsely arranged in the screen space. This is because the

blending ratios will be excessively smoothed out when we ap-

ply Laplacian smoothing many times.

In order to preserve the original distribution of the blending

ratios at the respective nodes to a certain extent while properly480

smoothing them out, we employed Taubin’s two-step smooth-

ing [31, 32] instead. The advantage of this smoothing opera-

tion is that it works as an approximate low-pass filter and thus

never incurs unwanted shrinkage problems, as the conventional

Gaussian filters do, especially when we think of the spatial dis-485

tribution of the local blending ratios as a signal defined over

the screen space. Taubin’s smoothing consists of alternating

shrinking and expanding steps, which can be formulated as fol-

lows:

α′
i
= αi + λ{(

∑

j∈Ni

α j/|Ni|) − αi} and

α′′
i
= α′

i
+ µ{(

∑

j∈N′
i

α′j/|N
′
i |) − α

′
i },

(13)

where 0 < λ < −µ. The first equation corresponds to the shrink-490

ing step, which updates αi to α′
i
, and the second equation rep-

resents the expanding step, which replaces α′
i

with α′′
i

. Note

that |Ni| and |N′
i
| represent the sizes of the neighbors around

vi at each step. See [31] for possible choices of λ and µ. We

employed the parameter setup proposed in [32] among the pos-495

sible choices. By applying this two-step smoothing operation,

we can obtain a network layout that is more compact and closer

to the original force-directed layout, as shown in Figure 8(c).

5.3. Selecting nodes in the neighborhood

The last technical issue we have to consider is how to select500

the neighbor nodes in the smoothing process described above.

In our approach, we prefer to collect spatially close neighbors

instead of topologically adjacent ones, because node labels that

are closer to the current node are more likely to collide with

that of the current node. A natural solution is to collect neigh-505

bors within a specific radius around the current node. Although

we tested this solution, the number of neighbors considerably

varies according to spatial density, and it can become zero in

cases where the current node is considerably isolated from oth-

ers.510

Thus, we select the k-nearest neighbors at each network

node, as shown in Figure 9. Throughout this paper, we em-

pirically set k = 8, because this setup produces relatively sta-

ble results. As for the distance metric, we again employ the

anisotropic version of the Chebyshev distance as our distance515

metric.
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(a) (b) (c) (d)

Figure 7: Comparison between the layouts of annotated social networks of dolphins [3]. (a) Layout obtained by centroidal Voronoi tessellation. (b) Transforming a

single ratio to blend the entire layout. Transforming individual ratios individually at the network nodes to adaptively blend the layout using (c) the Laplacian filter

and (d) the two-step filter. Note that the original force-directed layout is shown in Figure 1(a).

(a) (b) (c) (d)

Figure 8: Difference between network layouts obtained by (a) the conventional force-directed approach, (b) Laplacian smoothing with the Euclidean distance metric,

(c) Taubin’s two-step smoothing with the Euclidean distance metric, and (d) Taubin’s two-step smoothing with the Chebyshev distance metric.

Figure 9: Definition of the k-neighbors around the the node.

Figures 8(c) and (d) elucidate the difference between the Eu-

clidean and Chebyshev distance metrics in this context. The

comparison shows that the Chebyshev distance looks better

here because it can successfully spare the horizontally elon-520

gated labeling space around the network nodes and keep the

entire network layout more compact in the end. Figures 7(c)

and (d) show another comparison between one-step Laplacian

smoothing and Taubin’s two-step smoothing with the Cheby-

shev distance used for exploring the k-neighbors. In this case,525

we can visually confirm that the two-step smoothing maximally

retains the original layout produced by the force-directed ap-

proach.

6. Extension to Clustered Networks

This section presents the extension of the aforementioned530

node-labeling approach to clustered networks. It is now com-

mon to extract meaningful small communities in the network

as a preprocess by evaluating the significance of the network

nodes and edges, especially when the network is relatively large

in size and its layered structure is unlikely to be clear from the535

beginning. This suggests that it is important to annotate this

type of clustered network while maximally retaining its overall

layouts, although doing so becomes more difficult primarily be-

cause we have to fit the entire network within a limited screen

space. In our implementation, we first compose the aggregated540

version of the network by contracting the nodes in each clus-

ter into a single node. We then distribute the network nodes

in each cluster in the neighborhood of the corresponding con-

tracted node. Finally, we spare the labeling space around the

individual nodes while distributing the nodes of the aggregated545

network uniformly in the screen space.

6.1. Contracting clusters of network nodes

First, we perform a cluster analysis of the network to repre-

sent it in a hierarchical fashion. For this purpose, we need to

evaluate the contribution of the respective network primitives550

such as nodes and edges and then extract a set of meaningful
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Labeling the clustered network representing social relationships between dolphins [3]. (a) A clustered network layout based on edge betweenness

centrality. (b) An aggregated network where each node corresponds to a cluster of nodes. (c) The force-directed layout of the aggregated network. (d) Nodes in

each cluster are randomly arranged within the neighborhood of the corresponding contracted node. (e) Nodes in each cluster are rearranged using the force-directed

approach while keeping their barycenter identical with the corresponding contracted node. (f) Voronoi cell decomposition associated with the aggregated network.

(g) Rearranged cell decomposition after hierarchically applying adaptive blending to both the original and aggregated network. (h) Finalized layout of the annotated

clustered network.

clusters by referring to each primitive’s level of contribution.

As for the amount of contribution, we employ the edge be-

tweenness centrality, which is defined as the degree to which

the edge serves as a part of every shortest path over the net-555

work. We compute the edge betweenness centrality of the given

network using algorithms developed by Brandes [33] and cut

out the edges if they have larger betweenness centrality weights

than some threshold. In our implementation, the correspond-

ing threshold is carefully selected using a binary search of the560

sorted list of edge betweenness centrality weights of the net-

work, in such a way that the individual decomposed clusters

contain approximately 10 nodes on average. Figure 10(a) shows

an example in which the edges colored in orange stay connected

after the network decomposition based on the edge between-565

ness centrality, which means that the orange edges have a lower

centrality value than the selected threshold.

After decomposing the entire network into clusters, we com-

pute the barycenter of each cluster as its representative posi-

tion and contract the cluster to a single node, as shown in Fig-570

ure 10(b). Simultaneously, we connect a pair of such contracted

nodes with a link if the clusters in the corresponding pair share

at least one edge in the original network. This contraction step

allows us to delineate the backbone structure inherent in the

given network through the network clustering process. The ag-575

gregated version of the network will be used as a starting point

for spatially rearranging the given network while maximally

respecting its clustered structure, which was obtained through

the edge betweenness centrality computation. Note that in this

clustering process, we can employ different edge weights, in-580

cluding other types of centrality measures, according to the re-

quirements and preferences associated with the visual analysis

of the network data.

6.2. Hierarchical layout of clustered networks

Our next step is to rearrange the aggregated version of the585

network so that we can properly arrange the entire network

within the screen space. In our implementation, we simply ap-

ply the conventional force-directed approach to the aggregated

network, as shown in Figure 10(c), while also permitting users

to optionally relocate the contracted nodes as they like in our590

prototype system. After having improved the aggregated net-

work layout, we restore the connectivity of the original network

by referring to the aggregated version. This is accomplished

by replacing each contracted node with original network nodes

in the corresponding cluster and randomly distributing them595

within a small neighborhood of that contracted node, as shown

in Figure 10(d).

To further improve the layout of the clustered network, we

again apply the force-directed approach but we apply it individ-

ually to each cluster of nodes, as shown in Figure 10(e). This hi-600

erarchical layout is achieved by first applying the conventional

repulsive and attractive forces to the nodes in the respective
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clusters and then transforming them under the constraint in such

a way that their barycenter always coincides with the position of

the corresponding contracted nodes in the aggregated network.605

Note that this constraint will be retained in the remainder of this

hierarchical layout of the network. In this process, we do not

take into account repulsive forces between the nodes if they be-

long to different clusters. Moreover, the original length of the

spring is again set to be inversely proportional to the number610

of network nodes within the screen space, and the length thus

becomes smaller when we replace the aggregated network with

the original one.

6.3. Labeling nodes of clustered networks

At this point, we are ready to annotate the nodes of the clus-615

tered network while preserving its overall layout and avoiding

mutual overlap between the labels. This is again implemented

by introducing centroidal Voronoi tessellation as the space-

partitioning technique; however, this time, it is introduced to

both the original and aggregated networks. Figure 10(f) shows620

the starting state of the Voronoi tessellation associated with the

aggregated network layout, in which each site that contains one

contracted node together with the original nodes in the corre-

sponding cluster is drawn in a different color. In our implemen-

tation, we apply the aforementioned smoothing approach to the625

individual nodes of the original network. By contrast, we sim-

ply just increment the blending ratios of the contracted nodes in

the aggregated network on a step-by-step basis when the labels

of its corresponding member nodes have overlap with others.

This is because the number of contracted nodes in the aggre-630

gated network is originally small and smoothing their blend-

ing ratios is of no use. It should be remembered that we also

maintain the constraint imposed on the nodes in each cluster by

applying the same amount of displacement to them every time

we rearrange the nodes in the two networks. Figure 10(g) illus-635

trates the final state of the space partitioning associated with the

aggregated network, and Figure 10(h) presents the correspond-

ing layout of the annotated network. We can confirm from the

results that the final layout of the annotated network maintains

the clustered structure of the original layout while successfully640

avoiding mutual overlap between the annotation labels.

7. Experimental Results

This section presents examples of annotated network lay-

outs and compares between networks of four typical topolog-

ical types, followed by a discussion of the potential limita-645

tions of this approach. Our prototype system has been im-

plemented on a desktop PC with 3.5 GHz 6-Core Intel Xeon

E5 CPU and 32GB RAM, and its source code was written in

C++ using boost graph library (BGL) for handling network

data, OpenGL for graphics rendering, and Qt for system in-650

terface. We have equipped our system with an interface for

selecting a subset of nodes in order to annotate them and for

dragging the nodes to specific positions. Furthermore, addi-

tional forces applied to nodes around the boundary of the screen

space in such a way that they can stay within that space if they655

are annotated with text labels. Datasets available at GraphViz

(http://www.graphviz.org/) have been incorporated in our ex-

periments.

7.1. Network layout examples

Figure 11 shows how our approach can improve the read-660

ability of the annotated network by adaptively blending the

forces exerted by the force-directed approach and centroidal

Voronoi tessellation. Figure 11(a) represents a conventional

force-directed layout of the “b124” network, and Figure 11(d)

corresponds to that obtained by centroidal Voronoi tessellation.665

We cannot avoid unwanted overlap between the text labels as

shown in Figure 11(a). In Figure 11(d), by contrast, the text

labels are more likely to be horizontally or vertically aligned,

which causes distracted edge overlaps in the visualization of

annotated networks. Figures 11(b) and (c) are the intermediate670

layouts, in which the single unique ratio is employed to blend

the two layouts in Figure 11(c), and blending ratios are individ-

ually assigned to all the nodes in order to adaptively interpo-

late between the two layouts in Figure 11(b). The results indi-

cate that the layout in Figure 11(b) is more aesthetic because it675

can locally retain the original force-directed layout around the

nodes that still have sufficient labeling space. Unfortunately,

however, the layout in Figure 11(c) becomes similar to that in

Figure 11(d) if it cannot find sufficient labeling space around the

nodes, and thus degrades the readability of the network data.680

Note that in the caption for Figure 11, T and O indicate the

computation times (in seconds) and percentage of overlap with

respect to the total area of labels, respectively. We use the same

notation throughout the remainder of this paper.

Figure 12 demonstrates how we can arrange the clustered685

version of the annotated network “b106.” In this scenario, as

described earlier in Section 6.1, we first decompose the en-

tire network into several clusters by referring to the between-

ness centrality value of each network edge (Figure 12(a)). We

then compose the aggregated network by contracting the nodes690

and edges contained in each cluster into a single node (Fig-

ure 12(b)). After obtaining the force-directed layout of the ag-

gregated network, we resolve each cluster into its component

nodes while clarifying the characteristic structure of the origi-

nal network (Figure 12(c)). Even in this case, we can success-695

fully incorporate the space-partitioning technique to completely

eliminate the label overlaps while maximally preserving the ex-

isting hierarchical network layout (Figure 12(d)).

Figure 13 provides a comparison with the network layout cal-

culated using a previous approach. The algorithm developed700

by Gansner et al. [18] makes it possible to transform the con-

ventional force-directed layout presented in Figure 13(a) to that

presented in Figure 13(b). In fact, their algorithm can success-

fully eliminate the mutual overlap between the annotation la-

bels by inserting additional space around the nodes. Nonethe-705

less, the size of the newly introduced space often becomes re-

dundant because it strictly preserves the relative positioning of

network nodes and edges and thus cannot maximize the space

coverage of the screen space. Compared with this previous

method, our approach plausibly seeks a better compromise be-710

tween the layout obtained by the force-directed approach (Fig-
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(a) (b) (c) (d)

Figure 11: Visualizing the “b124” network data (|V | = 79, |E| = 281, 1,024 × 1,024 pixels). (a) A layout obtained using the force-directed algorithm (T = 39.64 s, O

= 1.20%). (b) A layout obtained by adaptively blending the force-directed layout and centroidal Voronoi layout individually with respect to the network nodes. (T

= 1.35 s, O = 0.00%). (Our approach) (c) A layout obtained by uniformly blending the force-directed layout and centroidal Voronoi layout over the network. (T =

14.51 s, O = 0.00%). (d) A layout obtained using centroidal Voronoi tessellation (T = 33.90 s, O = 0.00%). Note that the layouts in (b), (c), and (d) are transformed

from that in (a).

(a) (b) (c) (d)

Figure 12: Visualizing the “b106” clustered network data (|V | = 104, |E| = 230, 1,024 × 1,024 pixels). (a) Clustering the network using edge betweenness centrality.

Orange edges are those contained in the individual clusters. (b) Force-directed layout of the aggregated network, in which the nodes correspond to the respective

clusters. (c) Hierarchical representation of the force-directed clustered network (O = 14.74%). (d) Finalized layout of the clustered network obtained through

centroidal Voronoi tessellation (T = 26.80 s, O = 0.00%).

ure 13(a)) and that obtained by centroidal Voronoi tessellation

(Figure 13(d)), as shown in Figure 13(c).

Our system also provides us with a means of interactively

turning on/off the text labels by selecting the corresponding net-715

work nodes. Accordingly, Figure 14(a) shows a case in which

we are about to select a subset of nodes for annotation using

rectangular selection. At the same time, we conducted a struc-

ture analysis of this network by computing the betweenness

centrality value for each edge and decomposed the entire net-720

work into several clusters, as shown in Figure 14(b). After clar-

ifying its hierarchical structure by applying the force-directed

approach to this clustered network, as shown in Figure 14(c),

our technique can successfully spare labeling space around the

selected subset of nodes by fully taking advantage of the screen725

space, as illustrated in Figure 14(d).

7.2. Comparison between four typical types of networks

To evaluate the feasibility of our approach, we tested four

typical network types; banana trees, random networks, scale-

free networks, and small world networks. We also applied our730

approach to both nonclustered and clustered networks to expose

the difference in their layouts according to the type of network

representation. Figure 15 presents a comparison between the

layouts of four nonclustered annotated networks. Our approach

can establish a reasonable compromise between the layout ob-735

tained through the force-directed approach and that obtained

through centroidal Voronoi tessellation, and it can thus success-

fully maintain the overall configuration of force-directed lay-

outs while sparing sufficient labeling space around the respec-

tive nodes. As for the comparison between the four types of740

networks, our approach can illuminate the concentric structure

inherent in the banana trees even when they are not hierarchi-

cally rearranged. However, it cannot fully reflect the underlying

structures in the other three types of networks.

For the clustered networks, our approach provides an addi-745

tional means of controlling the overall network layout. Fig-

ure 16 presents a comparison in which clustered networks of

the four typical types are annotated with text labels. In this

case, we computed the betweenness centrality of the network

edges first and then decomposed the networks into several clus-750

ters as a preprocess, as shown in the first row of Figure 16.

This network analysis helps us compose aggregated versions of

the networks, as exhibited in the second row. After this step,

we recovered the original network topology while respecting
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(a) (b) (c) (d)

Figure 13: Visualizing the “b143” network data (|V | = 135, |E| = 366, 1,024 × 1,024 pixels). (a) A layout obtained using the force-directed algorithm. (b) A layout

obtained using the algorithm proposed by Gansner et al. [18]. (c) A layout obtained using our approach, in which we adaptively blend the force-directed layout and

that obtained by centroidal Voronoi tessellation (T = 37.87 s, O = 0.00%). (d) A layout obtained using centroidal Voronoi tessellation only.

(a) (b) (c) (d)

Figure 14: Interactively annotating the “b102” network data (|V | = 302, |E| = 611, 1,024 × 1,024 pixels). (a) Activating text annotations by selecting a subset of

nodes using rectangular selection. (b) Cluster analysis of the network while the selected nodes are annotated with text labels. (c) Hierarchical layout of this partially

annotated clustered network. (d) Finalized layout of annotations associated with the selected subset of nodes (T = 83.57 s, O = 0.00%).

the layouts of the aforementioned aggregated networks, as pre-755

sented in the third row, and augmented labeling space around

the nodes until all the labels were placed without distracting

overlaps, as shown in the fourth row. In this case, we first de-

lineated the backbone structure of the respective networks as

aggregated forms, and as a result the placement of text labels760

is more likely to reflect the underlying structure hidden behind

the networks. For example, we can explicitly extract concen-

tric subnetworks from banana trees, hub nodes from scale-free

networks, and sparse backbone networks from small world net-

works, as illustrated in Figure 16. The placement of node labels765

provides a better outline of such backbone structures of the re-

spective networks. Furthermore, the aggregated representation

provides us with more flexibility in properly arranging entire

networks within a limited screen space.

7.3. Discussion770

Of course, the number of labels that can be placed basically

depends on the availability of the screen space. However, plac-

ing an excessive number of annotation labels usually results in

network layouts that are quite close to those obtained directly

by centroidal Voronoi tessellation. This inevitably degrades the775

quality of network layouts, because edges are more likely to

overlap with each other. Furthermore, this covers the majority

of the screen space and thus hides the connectivity among the

network nodes behind the text labels, which again lowers the

readability of the annotated network layouts. Inferring a rea-780

sonable number of labels while establishing a better compro-

mise between the amount of annotation and network readability

is an important issue.

It is cumbersome to better control the ratios for blending the

multiple network layouts, especially around the boundary of the785

screen space, because we adaptively change the ratio at each

node by referring to those of the nodes in its local neighbor-

hood. In practice, Voronoi cells around the boundary some-

times take up relatively large amounts of space, primarily be-

cause the changes in the blending ratios are not fully propa-790

gated to the rest of the network nodes. In this case, we can

replace the two-step Taubin’s smoothing with the single-step

Laplacian smoothing in order to distribute such changes more

broadly. However, this replacement will result in another prob-

lem: we cannot fully retain the original force-directed layouts.795

A more sophisticated scheme for updating blending ratios, pos-

sibly based on the hybrid formulation combining the Laplacian

and two-step smoothing, may solve this technical problem.

Aggressively allowing more systematic user intervention is

one of the promising solutions for editing annotated network800

layouts. For example, users can freely specify the range of

12



banana tree random network scale free network small world network

|V | = 151, |E| = 150 |V | = 151, |E| = 371 |V | = 151, |E| = 285 |V | = 151, |E| = 151

O = 0.51% O = 13.60% O = 9.13% O = 2.66%

T = 31.36 s, O = 0.00% T = 60.00 s, O = 0.01% T = 48.03 s, O = 0.00% T = 57.99 s, O = 0.00%

T = 5.31 s, O = 0.00% T = 35.89 s, O = 0.00% T = 41.19 s, O = 0.00% T = 8.69 s, O = 0.00%

Figure 15: Comparison between four typical types of nonclustered networks (1,024 × 1,024 pixels). First row: Force-directed layouts. Second row: Layouts

obtained by centroidal Voronoi tessellation. Third row: Layouts obtained by blending two layouts uniformly with respect to the nodes. Fourth row: Layouts

obtained by blending two layouts adaptively with respect to the nodes.
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banana tree random network scale free network small world network

|V | = 151, |E| = 150 |V | = 151, |E| = 371 |V | = 151, |E| = 285 |V | = 151, |E| = 151

O = 4.23% O = 8.99% O = 8.38% O = 16.89%

T = 15.52 s, O = 0.00% T = 29.31 s, O = 0.00% T = 35.50 s, O = 0.00% T = 63.01 s, O = 0.00%

Figure 16: Comparison between four typical types of clustered networks. First row: Force-directed clustered layouts. Second row: Aggregated network layouts

obtained by contracting the clusters into nodes. Third row: Hierarchical layouts of annotated clustered networks. Fourth row: Finalized layouts of annotated

clustered networks. Note that the aggregated network layout of the small world network has been manually designed with the interface of our system.

14



labeling space within the screen space to properly control the

placement of text labels. Asking users to select subsets of im-

portant nodes for annotation is a practical approach, especially

for handling networks with a large number of nodes. Auto-805

matically selecting of such important nodes by referring to the

network topology will be also helpful. Accelerating the overall

computation, probably with the help of GPUs, will be in high

demand in interactive environments as well.

8. Conclusion810

In this paper, we have presented an approach for properly an-

notating network nodes by exploring a compromise between the

layouts obtained by the conventional force-directed approach

and centroidal Voronoi tessellation. The primary advantage of

our technique is its capacity to effectively eliminate unaccept-815

able overlaps among annotation labels while maximally retain-

ing the initial layout of the network generated by the conven-

tional force-directed approach. This can be accomplished by

adaptively adjusting the ratio at each node in order to blend the

aforementioned two forces according to the availability of its820

surrounding labeling space first, and then smoothing it out with

those of its spatial neighbors through the shrinkage-free filter.

We have further advanced our approach by extending our target

from simple networks to clustered ones, so that we can explic-

itly visualize their inferred hierarchical structures.825

Future research could investigate more sophisticated control

over the blending ratios at the respective network nodes in or-

der to further accelerate the annotation of large-scale networks.

Incorporating more manual intervention in order to systemati-

cally guide annotated network layouts could also be an interest-830

ing subject for future research.
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