next up previous
Next: About this document ... Up: No Title Previous: ¸¡Æ¤»ö¹à

ÉÕÏ¿      --  °ÌÁê¤ÎÃ٤졿¿Ê¤ß¤ÎÉü½¬¡¢¤Þ¤È¤á  --

¤³¤³¤Ç¤Ï¡¢°ÌÁê³Ñ$\phi$¤¬ $\frac{\pi}{4}$¤Î¾ì¹ç¤òÎã¤È¤·¤Æ¼¨¤¹¡£
Àµ¸¹ÇÈ $\sin\omega t$¡¢ $\sin(\omega t+\frac{\pi}{4})$¡¢¤ª¤è¤Ó $\sin(\omega t-\frac{\pi}{4})$¤Î¥°¥é¥Õ¤ò²¼¿Þ¤Ë¤Ë¼¨¤¹¡£


Figure 10: ¿Ê¤ß°ÌÁê¤ÎÀµ¸¹ÇÈ
\resizebox{8cm}{5cm}{\includegraphics{Untitled.eps}}




Figure 11: ÃÙ¤ì°ÌÁê¤ÎÀµ¸¹ÇÈ
\resizebox{8cm}{5cm}{\includegraphics{Untitle2.eps}}




ÅÀÀþ¤Î $\sin\omega t$¤ò´ð½à¤Ë¤È¤ë¤È¼ÂÀþ¤Î $\sin(\omega t+\frac{\pi}{4})$¤Ï°ÌÁ꤬ $\frac{\pi}{4}$¤À¤±¿Ê¤ß¡¢¼ÂÀþ¤Î $\sin(\omega t-\frac{\pi}{4})$¤Ï°ÌÁ꤬ $\frac{\pi}{4}$¤À¤±ÃÙ¤ì¤Æ¤¤¤ë¡¢¤ÈÄêµÁ¤µ¤ì¤Æ¤¤¤ë¡£ ¤¿¤À¤·¡¢°ÌÁê¤Î¡Ö¿Ê¤ß¡¢ÃÙ¤ì¡×¤ÏÁêÂÐŪ¤Ê¤â¤Î¤Ç¤¢¤ê¡¢ $\sin(\omega t+\frac{\pi}{4})$¤ò´ð½à¤Ë¤¹¤ì¤Ð¡¢ $\sin\omega t$¤Ï $\frac{\pi}{4}$¤À¤±ÃÙ¤ì¤Æ¤¤¤ë¤³¤È¤Ë¤Ê¤ë¡£
¤·¤¿¤¬¤Ã¤Æ¡¢ ¿Þ¤«¤éʬ¤«¤ë¤è¤¦¤Ë¤¢¤ëÇÈ·Á¤¬¡¢´ð½à¤È¤¹¤ëÇÈ·Á¤Îº¸Â¦¤Ë¤¢¤ë¤È¤­¤Ï°ÌÁ꤬¿Ê¤ß¡¢±¦Â¦¤Ë¤¢¤ë¤È¤­¤Ë¤Ï°ÌÁ꤬ÃÙ¤ì¤Æ¤¤¤ë¤³¤È¤Ë¤Ê¤ë¡£
ľÎ󶦿¶¤Î¼Â¸³¤Ë¤ª¤¤¤Æ ½ÐÎÏÅÅ°µVR¤È(´ð½à¤È¤·¤¿)ÆþÎÏÅÅ°µV¤Î´Ö¤Î°ÌÁê³Ñ$\phi$¤Ï

\begin{eqnarray*}f &=& f_0=\frac{1}{2\pi \sqrt{LC}}¤Î¤È¤­\phi=0¡§V_R¤ÈV¤ÎÇÈ·Á¤Ï°...
...\\
f &>& f_0¤Î¤È¤­\phi < 0¡§V_R¤ÏV¤ÎÇÈ·Á¤Î±¦Â¦¤Ë¤¯¤ë(ÃÙ¤ì°ÌÁê)
\end{eqnarray*}


FG(¥Õ¥¡¥ó¥¯¥·¥ç¥ó¥¸¥¨¥Í¥ì¡¼¥¿)¤Çȯ¿¶¼þÇÈ¿ôf¤òÊѤ¨¤Æ¹Ô¤¯¤È¡¢ $\frac{V_R}{V}$¤ÎÂ礭¤µ¤¬ÊѲ½¤¹¤ë¤È¶¦¤Ë¡¢VR¤ÈV¤ÎÇÈ·Á¤ÎÁêÂаÌÃÖ(°ÌÁ꺹)¤¬¾åµ­¤Î¤è¤¦¤ËÊѲ½¤·¤Æ¤¤¤¯¤Î¤ò´Ñ»¡¤Ç¤­¤ëŽ¡

Kenichi Kuroda
2000-06-24