AY 2015 Undergraduate School Course Catalog

Mathematics

2016/02/01

Back
開講学期
/Semester
2015年度/Academic Year  前期 /First Semester
対象学年
/Course for;
1st year
単位数
/Credits
2.0
責任者
/Coordinator
Shigeru Watanabe
担当教員名
/Instructor
Takao Maeda , Kazuto Asai , Shigeru Watanabe , Chikatoshi Honda
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/01/19
授業の概要
/Course outline
In the basic course, there are two subjects in mathematics: one is linear algebra
and the other is differential and integral calculus. In this class, the basic part
of linear algebra will be taught. Students are required to study this class side
by side with differential and integral calculus, because these subjects are closely
connected each other.
Linear algebra is a field of mathematics that is based on both addition and scalar
multiple, and vectors in high school mathematics are its basic parts. The main
theme of linear algebra is eigenvalue problem that arose from the theory of
simultaneous linear differential equations, while its historical origin is in
solving simultaneous linear equations. The purpose of this class is to learn
necessary notions and techniques to consider eigenvalue problem.
Exercises will be also given side by side with the lectures. Students are expected
to participate subjectively and positively.
Linear algebra has many applications to computer science and engineering. For example,
it is impossible to understand mechanisms of computer graphics without linear algebra.
Further, some fields of mathematics arose from engineering and physics, and developed
under the influences of them. These are the essential reasons why mathematics is
required to learn.
授業の目的と到達目標
/Objectives and attainment
goals
Objectives
The purpose of this class is to learn necessary notions and techniques to consider
eigenvalue problem, and the following contents will be dealt with.
vectors in plane, vectors in space, matrices of (2,2)-type, matrices of (3,3)-type,
general definition of matrix, elementary transformations, simultaneous linear
equations, inverse matrices, determinants, linear spaces, dimension and basis,
subspaces, linear mappings

Attainment targets
Students will be able to understand rank and solve simultaneous linear equations.
Students will be able to understand base and dimension of linear space and deal with
linear subspaces.
授業スケジュール
/Class schedule
1 Introduction to matrices (1)
2 Introduction to matrices (2)
3 Matrices and linear transformations (1)
4 Matrices and linear transformations (2)
5 Definition of matrix and operations - general theory
6 Square matrices, regular matrices and linear mappings
7 Elementary transformations and rank
8 Simultaneous linear equations
9 Definition of determinant
10 Properties of determinant
11 Expansions of determinant
12 Definition and properties of linear space
13 Basis and dimension
14 Linear subspaces
15 Linear mappings
教科書
/Textbook(s)
Asai class, Watanabe class
Masahiko Saito Introduction to linear algebra (in Japanese) University of Tokyo Press
Yoshihiro Mizuta Linear algebra (in Japanese) Saiensu-sha

Maeda class
Ryuji Tsushima Lectures on linear algebra revised ed.(in Japanese) Kyoritsu Shuppan
Yoshihiro Mizuta Linear algebra (in Japanese) Saiensu-sha
成績評価の方法・基準
/Grading method/criteria
Final examination
(Midterm examination and assignments depend on professors.)


Back
開講学期
/Semester
2015年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
1st year
単位数
/Credits
2.0
責任者
/Coordinator
Shigeru Watanabe
担当教員名
/Instructor
Takao Maeda , Shigeru Watanabe , Yodai Watanabe , Chikatoshi Honda
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/01/19
授業の概要
/Course outline
Linear algebra II is a continuation of linear algebra I and deals with eigenvalue problem.
Students are required to study this class side by side with differential and integral
calculus because of the same reason that is described in the syllabus of linear algebra I.
For example, matrices and determinants play important roles in differential and integral
calculus of several variables. And eigenvalue problem gives a strong way to solve recurrence
formulae of sequences. Students must know importance of understanding organic connection
between linear algebra and differential and integral calculus. They will also learn bases of
vector analysis that is necessary to learn electromagnetism. Besides, the fundamental policy
does not change from the case of linear algebra I.
授業の目的と到達目標
/Objectives and attainment
goals
Objectives
Eigenvalue problem of matrices
eigenvalues, eigenvectors, diagonalization

Attainment targets
Students will be able to solve eigenvalues and eigenvectors.
Students will be able to deal with diagonalization.
Students will be able to deal with diagonalization of normal matrices by unitary matrices.
授業スケジュール
/Class schedule
1 Inner products
2 Metric linear spaces
3 Orthogonalization
4 Introduction to eigenvalue problem --- meaning of diagonalization
5 Eigenvalues and eigenvectors (1)
6 Eigenvalues and eigenvectors (2)
7 Diagonalization (1)
8 Diagonalization (2)
9 Diagonalization of normal matrices by unitary matrices (1)
10 Diagonalization of normal matrices by unitary matrices (2)
11 Diagonalization of normal matrices by unitary matrices (3)
12 Diagonalization of real symmetric matrices by orthogonal matrices
13 Quadratic forms
14 Quadratic curves
15 Exponential mappings

The order of classes may be changed.
教科書
/Textbook(s)
Watanabe class
Masahiko Saito Introduction to linear algebra (in Japanese) University of Tokyo Press
Yoshihiro Mizuta Linear algebra (in Japanese) Saiensu-sha

Maeda class
Ryuji Tsushima Lectures on linear algebra revised ed.(in Japanese) Kyoritsu Shuppan
Yoshihiro Mizuta Linear algebra (in Japanese) Saiensu-sha

成績評価の方法・基準
/Grading method/criteria
Final examination
(Midterm examination and assignments depend on professors.)


Back
開講学期
/Semester
2015年度/Academic Year  前期 /First Semester
対象学年
/Course for;
1st year
単位数
/Credits
2.0
責任者
/Coordinator
Hiroshi Kihara
担当教員名
/Instructor
Toshiro Watanabe , Hiroshi Kihara , Yoshiko Ogawa , Yodai Watanabe
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/02/02
授業の概要
/Course outline
本講義では、微積分の前半部分を学習する。もう一方の柱である線型代数と並行して履修することになるが、線型代数の理解なくして微積分の理解はありえない し、その逆もありえないからである。また物理では、早々に微積分が必要となり、さらにはベクトルに対する微積分まで登場する。これらを学習するためにも、 なるべく早い時期に、二つの基礎数学に接し、双方を有機的に結び付けて理解しておくことは重要である。

微積 分は、図形の面積、曲線への接線等の問題を出発点とし、ニュートンによる力学的考察に基づいて一定の基礎が築かれた。極限の概念がその根底にあるのは、い うまでもないことである。その後も、先人達によって整備された微積分は、その扱われ方の違いから、一変数と多変数のふたつにわけられる。本講義では、この うち一変数の微積分を扱う。基本的な計算技術に関しては、高校で学ぶ事柄と大差はなく、扱う関数の範囲を若干ひろげるだけのことである。異なるのは、極限 概念の取り扱いであるが、厳密な議論を行うには無理な点があるので、全面的な導入はしない。受身になりがちな講義と並行して、学生の主体的学習の場として 演習も行う。学生諸君の積極的参加を期待する。
授業の目的と到達目標
/Objectives and attainment
goals
高校で習った微積分に よりしっかりした基礎付けを行いながら、 逆三角関数や関数の展開 積分の漸化式等のより高度な内容も紹介していく。
この教科は このあとで習う微積分II、確率統計学、フーリエ解析、複素関数論だけでなく、物理やコンピュータサイエンスのあらゆる分野に進むための基礎知識となる。
授業スケジュール
/Class schedule
1. 実数の集合
2. 数列の極限
3. 関数の極限と連続関数
4. 導関数および指数関数と対数関数
5. 三角関数と逆三角関数および高次導関数
6. オイラーの公式
7. 微分、平均値の定理および関数の増減
8. テイラーの定理および関数の展開
9. 不定積分と漸化式
10. 有理関数の積分
11. 一階および二階の線型微分方程式
12. 定積分の定義および性質
13. 定積分の計算と定義の拡張、図形の計量
教科書
/Textbook(s)
栗田稔著「新講 微積分学」学術図書、1、442円
米田元 著 「理工系のための微分積分入門」 サイエンス社 1890円
成績評価の方法・基準
/Grading method/criteria
小テスト、期末テスト
履修上の留意点
/Note for course registration
なし
履修規程上の先修条件:なし
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
授業で指示する


Back
開講学期
/Semester
2015年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
1st year
単位数
/Credits
2.0
責任者
/Coordinator
Hiroshi Kihara
担当教員名
/Instructor
Toshiro Watanabe , Hiroshi Kihara , Yoshiko Ogawa , Takeaki Sampe , Takahiro Tsuchiya
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/02/02
授業の概要
/Course outline
微積分Iに引続き、多変数関数の微積分を扱う。一変数のときと比べて、趣が異なるけれども、実際の計算は、一変数の場合に帰着してしまう。従って、授業を 大事にして基本さえおさえておけば、何ら恐れることはない。なお、基本的方針は、微積分 I と変わるところはない。また、線型代数 II の項も参照されたい。
授業の目的と到達目標
/Objectives and attainment
goals
多変数の微積分の基礎の修得を目的とする。
1変数関数に対する微分は多変数関数に対する偏微分に拡張されるが その考え方 計算は難しくない。微分を1変数関数の極大極小問題に応用したように偏微分を多変数関数の極大極小問題に応用する。
また 1変数関数に対する積分は多変数関数に対する重積分に拡張されるが やはりその考え方 計算は難しくない。特に1変数関数に対する置換積分にあたる変数変換の技法に習熟してほしい。
最後に 級数についても学ぶ。特に関数項級数は フーリエ変換、複素関数論の基礎にもなる。
授業スケジュール
/Class schedule
1. 媒介変数による曲線の表示
2. 偏微分係数
3. 合成関数の微分法
4. 全微分および関数の展開
5. 関数の極大極小
6. 陰関数および曲線と曲面
7. 重積分およびその計算
8. 変数の変換による重積分
9. 面積および体積
10. 一次微分式と積分
11. 無限級数の収束、絶対収束と条件収束
12. 無限級数の和と積および関数列の極限
13. 整級数
教科書
/Textbook(s)
栗田稔著「新講 微積分学」学術図書、1442円
米田元 著 「理工系のための微分積分入門」 サイエンス社 1890円
成績評価の方法・基準
/Grading method/criteria
小テスト、期末テスト
履修上の留意点
/Note for course registration
線型代数I、微積分I
履修規程上の先修条件:なし
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
授業で指示する


Back
開講学期
/Semester
2015年度/Academic Year  前期 /First Semester
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
Takao Maeda
担当教員名
/Instructor
Takao Maeda , Takahiro Tsuchiya
推奨トラック
/Recommended track
CF,CM,VD,CN,VH,RC,BM
履修規程上の先修条件
/Prerequisites
(M1 or M2) & (M3 or M4)

更新日/Last updated on 2015/02/02
授業の概要
/Course outline
The origin of Fourier analysis is a study of the heat equation (differential equation) by Fourier in early 19th century.  The basic idea was “express arbitrary functions by using trigonometric functions well!”  This way of thinking led to many useful results in many application fields, but it was uncertain whether the conclusions were mathematically justified, since the concept of convergence had not been discovered.  In the present day, a proper theory has been developed for conventional sciences and technologies.  Fourier analysis is an indispensable basic theory for not only processing differential equations of Fourier’s era, but also modern applications, e.g., signal processing (including for image information and sound information, etc.)  The technique for handling the given function by using trigonometric functions and exponential functions is given though we will not examine of mathematical proofs in this lecture.  Through the answers to the exercises, students will become familiar with calculations and skilled at using basic theorems of Fourier analysis.
授業の目的と到達目標
/Objectives and attainment
goals
Part1. Fourier series expansion
Students will calculate Fourier series of a function expressed by polynomials, exponential functions or trigonometric functions over a finite interval.  
Part2. Conditions of convergence of Fourier series
Students will understand conditions of convergence of Fourier series, the relationship between a given function and the Fourier series derived from them.  They will also understand Parceval’s theorem and apply it.  
Part3. Fourier integral
Students will understand that the Fourier integral is obtained through a heuristic method that extends finite intervals to infinite ones and calculates Fourier transforms and Fourier integrals (Fourier inverse transforms) of given functions.  Target functions are not only elementary functions described above, but also the functions of the type $e^{-x^2})$.  They will also understand a convolution of the functions, the relationship between the convolutions and the Fourier transforms of the functions and calculate them
Part4. Laplace transform
Students will understand the Laplace transform as a transform based on Fourier transform and apply it to solving a certain kind of ordinary differential equations.  The method to which the solution is expressed by a convolution of the Laplace transform is included.  
Part5. Discrete Fourier transform
Through the heuristic consideration of the stepping functions by applying the theory of Fourier series, students will understand the theory of discrete Fourier transform (DFT) similar to the theory introduced in Part 2.  They will also understand the method of the fast Fourier transform (FFT) as an efficient algorithm of DFT and appreciate its speed.
授業スケジュール
/Class schedule
Week 1: Part1. Fourier series expansion
Week 2: Part1. Fourier series expansion
Week 3: Part1. Fourier series expansion (Ex.)
Week 4: Part2. Conditions of convergence of Fourier series
Week 5: Part2. Conditions of convergence of Fourier series
Week 6: Part2. Conditions of convergence of Fourier series (Ex.)
Week 7: Part3. Fourier integral
Week 8: Part3. Fourier integral
Week 9: Part3. Fourier integral (Ex.)
Week 10: Part4. Laplace transform
Week 11: Part4. Laplace transform
Week 12: Part4. Laplace transform (Ex.)
Week 13: Part5. Discrete Fourier transform
Week 14: Part5. Discrete Fourier transform
Week 15: Comprehensive Exercise
教科書
/Textbook(s)
Gen-ichiro Sunouchi, Fourier analysis and its applications (SAIENSU-sha)
成績評価の方法・基準
/Grading method/criteria
Students will be assessed based on regular quizzes and report with an emphasis on the final examination.
履修上の留意点
/Note for course registration
Formal prerequisite: M-3 Calculus I or M-4 Calculus II, M-1 Linear algebra or M-2 linear algebra II
Important related courses: M-6 Complex analysis, A-3 Image processing, A-8 Digital signal processing
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
Transnational college of Lex (ed.), “Adventure of Fourier” Hippo family club
Ken-ichi Kanaya, “Applied mathematics”, Kyoritsu Syuppan


Back
開講学期
/Semester
2015年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
Kazuto Asai
担当教員名
/Instructor
Masahide Sugiyama , Hiroshi Kihara , Kazuto Asai
推奨トラック
/Recommended track
CF,CM,VD,CN,RC
履修規程上の先修条件
/Prerequisites
M5

更新日/Last updated on 2015/02/02
授業の概要
/Course outline
Although complex functions, in the wider sense, are mappings from complex numbers to themselves, i.e. complex-valued functions of a complex variable, the main objects of Complex Analysis are functions satisfying analyticity. The analyticity is a property of local representability of a function as convergent power series, which is equivalent to the condition that a function is holomorphic (differentiable with respect to a complex variable) in the corresponding domain.

In this course, we introduce complex functions, and learn holomorphy of functions and the Cauchy--Riemann equations. Next we define complex integration along a curve on the complex plane, and learn Cauchy's integral theorem/formula, etc. In virtue of this result, we have the Taylor series expansion and the Laurent series expansion of functions. The former is power series expansion of functions, which is the most fundamental result in Complex Analysis. The latter is applied to the study of singularities and the residue theorem. In addition, we derive many techniques useful for direct applications such as the maximum modulus principle, calculation of solutions to differential equations using the method of power series, and determination of the number of zeros of functions by Rouche's theorem.

When we study Complex Analysis, we are impressed that all of the needed theorems are derived very naturally one after another. Hence it is said that this theory has a beautiful system of mathematics. In particular, the most amazing fact is that every analytic function is completely determined by the behavior in a very small domain. This is similar to the fact that every life can be completely regenerated from a cell.

Analyticity is a property that our familiar many real functions have -- polynomials, rational functions, exponent functions, logarithm functions, trigonometric functions, and all combinations of them have analyticity. Therefore, Complex Analysis is easy to apply to many areas. The knowledge of Complex Analysis is very important for various application areas such as electromagnetism, fluid mechanics, heat transfer, computer system theory, signal processing, etc.

授業の目的と到達目標
/Objectives and attainment
goals
Students understand what is a "holomorphic function", and can apply Cauchy's integral theorem/formula to several problems. They learn analytic functions are expanded by Taylor/Laurent series. Also, they use residue theorem to some integral calculation.

Attainment targets: holomorphic functions, Cauchy--Riemann equations, complex integrals, Cauchy's integral theorem, Cauchy's integral formula, Taylor series, Laurent series, singularities, residue theorem.

授業スケジュール
/Class schedule
(The following is an example, details depend on each class.)

1. complex plane, point at infinity
2. holomorphic functions, Cauchy-Riemann equations
3. harmonic functions
4. exponent functions, trigonometric functions, logarithm functions, roots, complex powers of complex numbers
5. complex integrals
6. Cauchy's integral theorem, integrals of holomorphic functions
7. Cauchy's integral formula, Liouville's theorem, maximum modulus principle
8. complex sequence and series
9. sequence and series of functions, uniform convergence
10. power series and its convergence domain
11. Taylor series expansion
12. Laurent series expansion, zero points, singularities
13. residue theorem
14. application to several (real) definite integrals
15. power series solutions to differential equations

教科書
/Textbook(s)
Handouts by each instructor and the following:

Sugiyama's class: Nattokusuru Fukusokansu (2000), Kodansha, by Yoshitaka Onodera.

Asai's class: Handout is a main textbook. As a side reader, Nattokusuru Fukusokansu (2000), Kodansha, by Yoshitaka Onodera.

Kihara's class: Kogakukiso Fukusokansuron (2007), Saiensu-sha, by tetsu yajima, masayuki oikawa.

成績評価の方法・基準
/Grading method/criteria
Overall scores of final examination, mini examination and reports.

Note: Evaluation method depends on each instructor. Detailed information may be found in his home page.
履修上の留意点
/Note for course registration
Prerequisites: Fourier analysis.

Other related courses: Differential and Integral Calculus I, Differential and Integral Calculus II, Electromagnetism.
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
http://web-int.u-aizu.ac.jp/~sugiyama/Lecture/CA/2015/welcome.html (Home page for Sugiyama's class)

~k-asai/classes/holm/ (Directory for Asai's class)
http://web-ext.u-aizu.ac.jp/~k-asai/classes/class-texts.html (Handouts and Exercises for Asai's class)


Back
開講学期
/Semester
2015年度/Academic Year  前期 /First Semester
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
Toshiro Watanabe
担当教員名
/Instructor
Toshiro Watanabe , Hiroshi Kihara , Takahiro Tsuchiya
推奨トラック
/Recommended track
CF,CM,CN,VH,RC,BM,SE
履修規程上の先修条件
/Prerequisites
M3 or M4

更新日/Last updated on 2015/02/04
授業の概要
/Course outline
Statistics is the most useful area in mathematics. However, it is not well known for students. It is important when we learn an elementary course of probability theory and Statistics.
授業の目的と到達目標
/Objectives and attainment
goals
As a study of random variation and statistical inference, Probability and Statistics are important in computer science and other wide areas of Mathematical sciences. The words of error, mean, variance, correlation, estimation are used most often. But, their definitions are not well known and
badly understanded. In this course, we explicitly explain these words and concepts of Probability and Statistics. They are useful knowledge for students. Moreover, statistical analysis is the basis on solve statistic problems in research and business.
授業スケジュール
/Class schedule
1. basis of statistics
2. 1-dim data
3. 2-dim data
4. probability
5. random variable
6. probability distribution
7. multi-dimensional probability distribution
8. Law of large number
9. sample distribution
10. sample from Gaussian distribution
11. estimation 1
12. estimation 2
13. hypothesis test 1
14. hypothesis test 2
15. exercise
教科書
/Textbook(s)
Tokei kaiseki Nyumon
(Kyoritu Press)
成績評価の方法・基準
/Grading method/criteria
Test and reports
履修上の留意点
/Note for course registration
M3 Calculus I or M4 Calculus II

Formal prerequisites:M3 Calculus I or M4 Calculus II
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
An Introductiion to Probability Theory and its Application, Vol 1
Tokeigaku Nyumon (Tokyo Univ Press)


Back
開講学期
/Semester
2015年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
Nobuyoshi Asai
担当教員名
/Instructor
Nobuyoshi Asai , Masahide Sugiyama , Kazuto Asai
推奨トラック
/Recommended track
CF,CM
履修規程上の先修条件
/Prerequisites
(M1 or M2) & F3

更新日/Last updated on 2015/02/02
授業の概要
/Course outline
In this course students study properties of sets which have algebraic operations on two elements. According to the condition of operations, the set is called as group, ring and field. Treating abstract algebraic operations derives general properties for these algebraic objects. As fundamentals in computer science students have already studied ``Algorithms and Data Structures''and ``Discrete Systems''. In these courses abstract algorithms, data structures and discrete systems have been introduced and these abstract thinking can be applied to solve many practical problems. These esprits of algebraic systems are the same, and one of basis of the powerful tools to describe, think and solve many practical problems. Using abstract algebraic discussions, coding theory, public key encryption, random number generation and other interesting applications will be introduced. In this lectures proofs of the theorems will be explained simply and the meaning of the theorems and their applications will be enhanced. Furthermore, abstract thinking and deductive thinking will be taught. In order to make students understand the paper exercises and programming exercises will be given. Also quizzes and homework will be carried out to confirm students understanding.
授業の目的と到達目標
/Objectives and attainment
goals
Understand algebraic structures and their applications
In this course, we will mainly study the following topics: algebraic operation and structure, semi-group, group, normal subgroup, quotient group, homomorphism theorem, finite group, direct product(direct sum) decomposition, symmetric group, general linear group, ring, matrix ring, ideal and quotient ring, Chinese Remainder theorem, prime and maximal ideal, localization, principal ideal ring, unique factorization ring, Euclidean domain, polynomial ring, field, field extension, algebraic extension, minimal decomposition field, finite field, constructable, M random sequence, coding theory.
授業スケジュール
/Class schedule
Class schedules and topics are different by lecturers. The following is a tentative example. For detailed information, please refer to the web page of each class.
01 promenade to algebraic system
02 remainder of integer and polynomial
03 group(1): Lagrange theorem
04 group(2): quotient group and homomorphism theorem
05 group(3): analysis of group structure
06 applications of group
07 Mid-exam
08 ring and field(1): ideal, quotient ring
09 ring and field(2): polynomial ring
10 ring and field(2): reversible
11 application(1): quotient field and operator theory
12 ring and field(4): extension of field
13 application(2): constructable in geometry
14 application(3): M-sequence random number generation
15 application(4): error correct coding
教科書
/Textbook(s)
Textbooks are different by lecturers.

- Sugiyama, N.Asai class
杉原,今井,工学のための応用代数,共立出版 (1999).

- K.Asai class
平林隆一, 工学基礎 代数系とその応用, 数理工学社 (2006).
成績評価の方法・基準
/Grading method/criteria
Student evaluation methods are different by lecturers.
- Sugiyama, N.Asai class
examinations (Mid-term, Final)
quizzes/homeworks
- K.Asai class
examinations (Final)
small exmas and reports
履修上の留意点
/Note for course registration
Prerequisites: Linear algebra I, Discrete Systems
Related courses: Information theory
Formal prerequisites:M1 Linear Algebra I or M2 Linear Algebra II
F3 Discrete Systems
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
Sugiyama class homepage:
http://web-int.u-aizu.ac.jp/~sugiyama/Lecture/AA/2013/welcome.html
K.Asai class homepage:
lecture directory: ~k-asai/classes/aalg
handout:
http://web-ext.u-aizu.ac.jp/~k-asai/classes/class-texts.html

N.Asai class homepage:
http://web-int.u-aizu.ac.jp/~nasai/Lecture/AA/2013/welcome.html
- D.W.ハーディ,C.L.ウォーカー, 応用代数学入門, ピアソンエデュケーション.
- 水野弘文, 情報代数の基礎, 森北出版.
- 伊理正夫, 藤重悟, 応用代数, コロナ社.
- 小野寛晰, 情報代数, 共立出版.
- ヘルマン・ヴァイル, シンメトリー, 紀伊国屋書店.
- 一松信, 石取りゲームの数理, 森北出版.
- J.ロットマン, ガロア理論, Springer.
- 渡辺,草場,代数の世界,朝倉出版.
- 細井,情報科学のための代数系入門,産業図書.
- 宮崎興二, かたちと空間,朝倉書店.
- 内田, 有限体と符号理論, サイエンス社.
- 草場, ガロワと方程式, 朝倉書店.
- E.アルティン, ガロア理論入門, 東京図書.
- ブライアンヘイズ, ベッドルームで群論を, みすず書房.
- D.M.デイビス, 美しい数学, 青土社.


Back
開講学期
/Semester
2015年度/Academic Year  前期 /First Semester
対象学年
/Course for;
3rd year
単位数
/Credits
2.0
責任者
/Coordinator
Lothar M. Schmitt
担当教員名
/Instructor
Lothar M. Schmitt
推奨トラック
/Recommended track
CF
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/01/26
授業の概要
/Course outline
The course has three parts:
(1) Review of Boolean Logic and Propositional Logic.
=============================================
This serves as a review to bring students with different prerequisites to the same level. Topics discussed include:
Mathematical propositions and truth values in {0=false,1=true}; Set theory; Boolean algebras as generalizing principle of the latter two subjects; Stone's Theorem.
Some computer applications of the material is discussed as well.

(2) Fuzzy Sets and Applications.
===========================
Here the structure of (1) is generalized to truth values in the full interval [0,1] in IR. This allows to define fuzzy subsets of a given set, the embedding of regular sets into the set of fuzzy subsets. A special case of fuzzy subsets are fuzzy relations.
The main application of this chapter is the rigorous development of the Tamura classification method based upon a given fuzzy relation. An indication how to use this method in image reconstruction is given.
See:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5408605

(3) Model Theory.
=================
In mathematics, model theory is the study of (classes of) mathematical structures (e.g., groups, fields, graphs, universes of set theory) using tools from mathematical logic. A theory is built which allows to say in a proper calculus: One can verify a formula or theorem in any set interpretation, if and only if one can find a formal proof of that formula or theorem by means of strict textual manipulations according to a fixed set of proof-rules without referring to special properties of any example. This is known as Goedel's completeness theorem.
授業の目的と到達目標
/Objectives and attainment
goals
To learn Logic and Applications from three perspectives: classical Boolean Logic, Fuzzy Logic, and Model Theory (logic of proofs, first order logic).
授業スケジュール
/Class schedule
Boolean Logic I-IV.
Fuzzy Logic and Relations V-VIII.
Model Theory IX-XV.
教科書
/Textbook(s)
[1] Online Lecture Notes (email L@LMSchmitt.de for the link).
[2] Pattern Classification Based on Fuzzy Relations, S. Tamura et al,: IEEE Transactions on Systems, Man and Cybernetics, 1971
[3] Mathematical Logic (Springer Undergraduate Texts in Mathematics)
H.-D. Ebbinghaus, J. Flum, W. Thomas
成績評価の方法・基準
/Grading method/criteria
Required for admission to final exam:
[a] sufficient attendance and
[b] participation in online quizzes (this is for training only).
The final exam determines the grade.
履修上の留意点
/Note for course registration
Rather self-contained course. Understanding basic logic and real numbers is welcome.
Formal prerequisites:None
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
Online Lecture Notes (email L@LMSchmitt.de for the link).


Back
開講学期
/Semester
2015年度/Academic Year  後期 /Second Semester
対象学年
/Course for;
2nd year
単位数
/Credits
2.0
責任者
/Coordinator
Shuxue Ding
担当教員名
/Instructor
Shuxue Ding
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/01/29
授業の概要
/Course outline
The subjects of this course include the fundamental concepts on
the topology, which are also the foundation of modern
mathematics, and their applications. Some topological invariants
or characteristics indexing the global structures of geometric
objects, such as the Euler characteristic, the Betti number,
etc., are introduced and are further investigated for how
to calculate and how to apply. Furthermore, the relationship
between the geometric objects, e.g. the topological space, and
algebraic objects, such as the Homology group, is introduced.
Since this relationship, the Homology group can be used for
classifying and investigating the global properties of the
geometric object.
授業の目的と到達目標
/Objectives and attainment
goals
Learn about fundamental concepts, basic properties and
calculating method about, curve and surface, global structure,
Euler characteristic, Betti number, Homology, and other
concepts related to topology. Apply them to analysis and
classify the global structures of 1-, 2- and 3- dimensional
geometric objects.
授業スケジュール
/Class schedule
1) Introduction, 1-dimensional topology
2) 1-dimensional topology: Connectivity and Euler-Poincare
   theorem (1)
3) 1-dimensional topology: Embed into Euclidean space (1)
4) 2-dimensional topology: Closed surface and polyhedron
5) 2-dimensional topology: Classification of closed surfaces
6) 2-dimensional topology: Connectivity and Euler-Poincare
   theorem (2)
7) 2-dimensional topology: Embed into Euclidean space (2)
8) Review of the first half and midterm examination
9) Group, Homomorphic, and Isomorphism
10) Part group, Kernel, Image, and Homomorphic theorem
11) Chain group and Chain complex
12) Homology group
13) 0-dimensional Homology group
14) 1-dimensional Homology group
15) Connectivity and Euler-Poincare theorem (3)
教科書
/Textbook(s)
The text book is written in Japanese: 瀬山士郎著「トポロジー:
柔らかい幾何学」 増補版 日本評論社
成績評価の方法・基準
/Grading method/criteria
Attendance and Quizzes: 15%
Exercise Reports: 20%
Midterm Examination: 30%
Final Examination: 35%
履修上の留意点
/Note for course registration
Linear Algebra I
Formal prerequisites:None
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
小宮克弘著 「位相幾何入門」裳華房
川久保勝夫著 「トポロジーの発想」講談社
Stephen Barr 「Experiments in Topology」
  Dover Publications, INC


Back
開講学期
/Semester
2015年度/Academic Year  前期 /First Semester
対象学年
/Course for;
3rd year
単位数
/Credits
2.0
責任者
/Coordinator
Lothar M. Schmitt
担当教員名
/Instructor
Lothar M. Schmitt
推奨トラック
/Recommended track
履修規程上の先修条件
/Prerequisites

更新日/Last updated on 2015/01/26
授業の概要
/Course outline
We study the ideas of topology from the application perspective of analysis. For this purpose, the definition of the real numbers IR is reviewed and it is shown how the sub-axiom in IR relates to the existence of limits. In the major part of the course, the relationship between
(1) limits in IR^n
(2) the canonical topology in IR^n
(3) continuous functions is discussed.
The relationship between these structures is studied extensively. As an application, we show, e.g., that compactness and associated uniform continuity are the ingredients which make integration work.

The second major part of this course introduces a rigorous treatment of the concept of continuous deformation (homotopy) and the fundamental groups which one can construct using homotopy equivalence classes of continuous functions on a set with a given topology. As an application we show the fundamental theorem of algebra at the end of the course.
授業の目的と到達目標
/Objectives and attainment
goals
Learn topological concepts in the context of the geometry in finite dimensional vector spaces and the natural (Euclidean) norm including embedded objects such as the torus in IR^3. Relate the concepts of supremum, limit, topology and continuous functions. Show how these concepts and homotopy apply in other mathematical disciplines.
授業スケジュール
/Class schedule
Review of IR, sup, IR^n (I-II).
Limits (III-IV).
Topology and relation to limits (V-VI).
Continuous functions and relation to limits and topology (VII-IX).
Applications to concepts in Analysis (X).
Homotopy and associated groups (XI-XIV).
Fundamental Theorem of Algebra and other applications (XV).
教科書
/Textbook(s)
[1] A Geometric Introduction to Topology (Dover Books on Mathematics) C. T. C. Wall
[2] Analysis I (Addison-Wesley) S. Lang
成績評価の方法・基準
/Grading method/criteria
Required for admission to final exam:
[a] sufficient attendance and
[b] participation in online quizzes (this is for training only).
The final exam determines the grade.
履修上の留意点
/Note for course registration
This is a follow-up course on topology and the reader is supposed to be familiar with the introductory course on topology given in UoA.
Formal prerequisites:None
参考(授業ホームページ、図書など)
/Reference (course
website, literature, etc.)
Lecture Notes can be obtained from L.M.Schmitt on CD. (email: L@LMSchmitt.de)


Responsibility for the wording of this article lies with Student Affairs Division (Academic Affairs Section).

E-mail Address: sad-aas@u-aizu.ac.jp