RESEARCH/研究紹介
The ACS Lab is a pioneering research facility dedicated to advancing computing technologies. As a collaborative hub for students, faculty, and industry partners, our mission is to transform high-power general-purpose computing into low-power, domain-specific computing. Our focus lies in the research and development of innovative architectures and edge chips, leveraging these technologies to enhance computational efficiency and performance while drastically reducing energy consumption. We are committed to leading the world towards a low-carbon information society by closing the gap with groundbreaking computing systems.

The second pillar of our research focuses on carbon-neutral energy management technologies. We will develop methods to control and optimize energy generation from various carbon-neutral energy resources. This includes integrating renewable energy sources with advanced storage and edge systems to ensure a stable and sustainable energy supply. Our goal is to create a comprehensive energy management system that not only supports carbon neutrality but also enhances the reliability and efficiency of energy distribution and consumption. Through these efforts, we hope to contribute to a more sustainable and energy-efficient future.

Power/Energy-Efficient Computing Architectures and Systems/SoCs: Development of power-efficient architectures and algorithms that maximize computational speed and efficiency for scientific simulations and data analysis.
電力/エネルギー効率の高いコンピューティング アーキテクチャとシステム/SoC:科学的シ ミュレーションおよ びデータ解析のための計算速度と効率を最大化する電力効率の高いアーキテクチャとアルゴリ ズムの開発。
Brain-inspired Algorithms and Systems: Designing hardware and software that simulate neural and synaptic structures to process information in a way similar to biological systems.
脳にヒントを得たアルゴリズムとシステム:生物システムに似た方 法で情報を 処理するために神経およびシナプス構造をシミュレートするハードウェアおよびソフトウェア の
 Advanced On-chip Interconnects: Focus on the communication pathways within a multicore chip, which are essential for connecting various components like processors, memory, and other functional units (2D/3D, Si-Photonics, Hybrid)
高度なオンチップ相互接続:プロセッサ、メモ リ、その 他の機 能ユニット(2D/3D、Si-Photonics、ハイブリッド)などの様々なコンポー ネントを接続するために不可欠なマルチコアチップ内の通信経路に注力。
AI-powered Green Energy Harvesting and Management Focuses on optimizing energy collection and usage in electric vehicles. It utilizes artificial intelligence to enhance the efficiency of energy harvesting from renewable sources, such as solar. The system intelligently manages and distributes the harvested energy, ensuring optimal performance and extending the vehicle's range. This technology aims to create a sustainable and efficient energy ecosystem for electric vehicles.
エネルギー収集と電気自動車における利用の最適化に焦点を当てています。人工知能を活用して、太陽 光などの再生可能エネルギーからのエネルギー収集効率を向上させます。システムは収集されたエネル ギーを知的に管理・分配し、最適な性能を確保しながら車両の航続距離を延ばします。この技術は、電 気自動車のための持続可能で効率的なエネルギーエコシステムを創造することを目指しています。